Precise Results on g_1^p and g_1^d and First Measurement of the Tensor Structure Function b_1^d with the HERMES-Experiment

Davide Reggiani

University of Erlangen-Nürnberg, Germany

hermes -Collaboration, DESY - Hamburg

DIS 2005 27 April - 1 May 2005 Madison, USA

Polarized DIS

Kinematics $Q^{2} = -q^{2} \stackrel{\text{Lab.}}{\simeq} 2EE'(1 - \cos \Theta)$ $x = \frac{Q^{2}}{2pq} = \frac{Q^{2}}{2M\nu}$ $\nu = \frac{pq}{M} \stackrel{\text{Lab.}}{\simeq} E - E'$ $y = \frac{pq}{pk} \stackrel{\text{Lab.}}{=} \frac{\nu}{E}$

Cross Section

$$\frac{d^2\sigma}{dE'd\Omega}\bigg|_{\rm Born} = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

Hadronic Tensor

$$W^{\mu\nu} = W_s^{\{\mu\nu\}}(F_1, F_2, \underbrace{b_1, b_2, b_3, b_4}_{\text{target spin 1}}) + W_a^{[\mu\nu]}(g_1, g_2)$$

Structure Functions in the QPM

Quark densities $q(x,Q^2)$:

Structure functions:

<mark>Spin-1</mark> (deuteron)
$F_1 = \frac{1}{3} \sum_q e_q^2 \left(q_{\uparrow}^1 + q_{\downarrow}^1 + q_{\downarrow}^0 \right)$
$g_1 = \frac{1}{2} \sum_q e_q^2 \left(q_{\uparrow}^1 - q_{\downarrow}^1 \right)$
$\mathbf{b_1} = \frac{1}{2} \sum_q e_q^2 \left(2q^0 - (q_\uparrow^1 + q_\downarrow^1) \right)$

Measured Inclusive Asymmetries

• Measured DIS Yield proportional to

$$\sigma = \sigma_{\text{unpol}} \left[1 + \frac{P_{\text{B}}P_{z}A_{\parallel}}{2} + \frac{1}{2}P_{zz}A_{zz} \right]$$

Inclusive vector asymmetry

$$A_{\parallel} := \frac{\sigma^{\overrightarrow{\leftarrow}} - \sigma^{\overrightarrow{\Rightarrow}}}{\sigma^{\overrightarrow{\leftarrow}} + \sigma^{\overrightarrow{\Rightarrow}}} = \frac{1}{P_{\rm B}P_z} \cdot \frac{\frac{N^{\overrightarrow{\leftarrow}}}{L^{\overrightarrow{\Rightarrow}}} - \frac{N^{\overrightarrow{\Rightarrow}}}{L^{\overrightarrow{\Rightarrow}}}}{\frac{N^{\overrightarrow{\leftarrow}}}{L^{\overrightarrow{\leftarrow}}} + \frac{N^{\overrightarrow{\Rightarrow}}}{L^{\overrightarrow{\Rightarrow}}}}$$
$$\frac{g_1}{F_1} = \frac{1}{1 + \gamma^2} \cdot \left(\frac{A_{\parallel}}{D} + (\gamma - \eta)A_2\right)$$

Kinematic variables

$$\gamma = \frac{\sqrt{Q^2}}{\nu}, \quad \eta = \eta(x, Q^2), \quad D = \frac{P_{\gamma^{\star}}}{P_{\rm B}}$$

Inclusive tensor asymmetry

$$A_{zz} := \frac{(\sigma^{\vec{\Leftarrow}} + \sigma^{\vec{\Rightarrow}}) - 2\sigma^{0}}{\sigma^{\vec{\Leftarrow}} + \sigma^{\vec{\Rightarrow}} + \sigma^{0}} = -\frac{2}{3}\frac{b_{1}}{F_{1}}$$

D. Reggiani , DIS 2005 - 27 April, 2005

The HERMES Experiment

Longitudinally Polarized e-Beam (27.6 GeV)

Longitudinally Polarized Internal H/D Gas Target

Single Hyperfine States can be Injected!

Polarizations:

vector
$$V = \frac{n^{+} - n^{-}}{n^{+} + n^{-} + n^{0}}$$

tensor $T = \frac{(n^{+} + n^{-}) - 2n^{0}}{n^{+} + n^{-} + n^{0}}$

 $<|P_z|>\approx 85\%$ $<|P_{zz}|>\approx 83\% <|P_z|>\approx 0$

D. Reggiani , DIS 2005 - 27 April, 2005

The HERMES Spectrometer

- Acceptance: $40 < \theta < 220$ mrad
- Momentum resolution: $\frac{\delta p}{p} \approx 2\%$ Angular resolution: 0.3 - 0.6 mrad
- PID: RICH, TRD, preshower, calo
 - Efficiency of electron ID: 98-99 %
 - Hadron contamination: < 1%

Radiative and Smearing Effects

replacements

- Background Tail
 - Radiation from (Quasi)-Elastic
- Intra-Bin Events Migration
 - Radiation from DIS
 - Detector Smearing

Unfolding Technique

If only (Quasi)-Elastic Background

$$A_{||}^{\text{Born}} = A_{||}^{\text{Meas}} \frac{n_{\text{unpol}}^{\text{X}}}{n_{\text{unpol}}^{\text{B}}} - \frac{bg_{\text{pol}}^{\text{X}}}{n_{\text{unpol}}^{\text{B}}}$$

- $n_{unpol}^{\rm X}$ Unpol. experimental distribution
- $n_{
 m unpol}^{
 m B}$ Unpol. Born distribution
- $\bullet \ \ bg_{pol}^X \qquad \text{Polarized radiative tail} \\$

Intra-Bin Migration

• Smearing Matrix

$$S_{ij} = \frac{n(i,j)}{n^B(j)}$$

Model-Independent Approach

Error Inflation

Unfolding

- Removes Systematic Correlations between data points
- Indroduces Statistical Correlation

For correct interpretation and usage of error bars:

\Rightarrow Correlation Matrix

Results: g_1/F_1 of Proton and Deuteron

- Statistical Error-bars
 Diagonal Elements of Covarinace Matrix
- Systematic Errors
 Dominated by Target and Beam Polarization

Results: xg_1 of Proton and Deuteron

- Statistical Error-bars
 Diagonal Elements of Covarinace Matrix
- Systematic Errors
 Dominated by Target and Beam Polarization

Comparison to World Data

First Moments Calculation

Exp.	$\mathbf{Q^2}(\mathbf{GeV^2})$	x range	Target	Moment	HERMES Moment
SMC	5	0.03-0.7	ρρ	0.128±0.006	0.1141±0.0026
E143	5	0.03-0.8		0.117±0.003	0.1174±0.0027
SMC	5	0.03-0.7	d	0.043±0.007	0.0416±0.0013
E143	5	0.03-0.8	d	0.043±0.003	0.0433±0.0013

Full Statistical Power of the HERMES Data!

D. Reggiani , DIS 2005 - 27 April, 2005

b_1^{d} Model Calculations

- Deuteron: D-state admixture
 - Elastic Scattering El. Quadrupole Moment $\neq 0$
 - DIS
 - Shadowing Effect
 - \Rightarrow Double Scattering Mechanisms

Significant contribution to b_1 at small x

Nikolaeva and Schäfer, *Phys. Lett.* B **398** (1997) 245 Edelmann, Piller and Weise, *Phys. Rev.* C **57** (1998) 3392 Bora and Jaffe, *Phys. Rev.* D **57** (1998) 6906

Results: A_{zz} and b_1^d

♥ N ◀ 0.02 **HERMES** First measurement ever 0.01 $A_{zz} \neq 0$ 0 $A_{zz} = \mathcal{O}(1\%)$ -0.01 \Rightarrow Small Impact on g_1 -0.02 10⁻² **10**⁻¹ Х \mathbf{b}_{1}^{d} 0.15 0.1 First Moment $\neq 0$: 0.05 $1.05\pm0.34_{
m stat}\pm0.35_{
m sys}$ 0 -0.05 Qualitative \mathbf{xb}_{1}^{d} Agreement with 0.002 **Double Scattering** 0 Models -0.002 -0.004 ⟨Q²⟩/GeV² 1 10

D. Reggiani, DIS 2005 - 27 April, 2005

10 ⁻¹

10⁻²

1

1

Х

Summary and Outlook

- Final Results of the g1 structure function for proton and deuteron from the HERMES data
- Data points of spin structure function now systematically uncorrelated, but statistically correlated
 ⇒ Correlation matrix for correct calculation of QCD fits and moments
- First measurement of tensor structure function b_1^d by HERMES $\Rightarrow b_1^d$ different from zero at small x
- To come: HERMES publications on spin and tensor structure functions

