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the QCDSF Collaboration.
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INTRODUCTION

Structure functions probe how hadrons are made up from quarks and gluons. The basis
for theoretical investigation is the operator product expansion (OPE), which connects
moments of structure functions with hadronic matrix elements of local operators. A
complete theoretical understanding of the underlying dynamics of quarks and gluons
thus requires the calculation of an appropriate set of matrix elements in QCD. This is a
nonperturbative problem, and lattice QCD holds the tools to solve it [1].

Polarized structure functions are of particular interest, ever since it was discovered
that only a small fraction of the spin of the nucleon is carried by the spin of the quarks.
They contain a wealth of information on the distribution of spin and transversity in the
fast moving nucleon, and their derivation provides a challenge, both experimentally and
theoretically.

In this talk I will concentrate on the axial and tensor charge of the nucleon, on the
nucleon’s second spin dependent structure function g2, as well as on the orbital angular
momentum of the quarks.

The lattice simulations are done with N f = 2 flavors of light dynamical quarks. To
reduce cut-off effects, we use non-perturbatively O(a) improved Wilson fermions. We
work on lattices as large as 243 48 and lattice spacings as small as 0.07 fm. The operators
are renormalized non-perturbatively as well throughout this talk.

AXIAL AND TENSOR CHARGE

The nucleon’s tensor charge gT measures the net number of transversely polarized va-
lence quarks in the transversely polarized nucleon, while the axial charge gA measures
the number of longitudinally polarized valence quarks in the longitudinally polarized
nucleon. One could argue that the two charges should be the same by rotational invari-
ance. This would be the case if the nucleon was made of free quarks. However, in the



FIGURE 1. The axial and tensor charge of the nucleon.

infinite momentum frame rotational invariance is highly nontrivial and the rotation oper-
ators involve interactions. Thus, the difference of axial and tensor charges tells us about
the interactions of quarks in the fast moving nucleon. In Fig. 1 I plot the axial and tensor
charge of the nucleon as a function of the pion mass squared. The tensor charge refers
to the MS scheme at 4 GeV2. We find little difference between gA and gT .

G2(X ,Q2) AND HIGHER TWIST

The nucleon’s second spin dependent structure function g2(x,Q2) is of considerable
phenomenological interest because at leading order in Q2 it receives contributions from
both twist-2 and twist-3 operators. Here we shall be interested in the second moment of
g2 only, and in particular in its twist-3 contribution d2:

d2 =

∫ 1

0
dxx2 g2(x,Q2) +

2
3

∫ 1

0
dxx2 g1(x,Q2) . (1)

In Fig. 2 I plot d2 as a function of the pion mass squared for proton and neutron
target. The lattice data involve different lattice spacings. For an analysis lattice spacing
by spacing and an attempt of a continuum extrapolation see [2]. In the chiral limit
d2 turns out to be consistent with zero, both for proton and nucleon. For the twist-3
contribution to the first moment we find dq

1 = (2mq/mN)δq (mq being the quark mass),
which vanishes in the chiral limit as well. This suggest that [3]

g2(x,Q2) =
∫ 1

x

dy
y

g1(y,Q2)−g1(x,Q2) . (2)



FIGURE 2. The twist-3 contribution to the second moment of g2 in the MS scheme at 5 GeV2.

ORBITAL ANGULAR MOMENTUM

The spin of the nucleon decomposes into the following contributions:

1
2

=
1
2

∆Σ + ∆G + Lq + Lg , (3)

where ∆Σ (∆G) is the quark (gluon) spin contribution and Lq (Lg) the contribution of
the orbital angular momentum of the quarks (gluon). The angular momentum Jq =
Lq + ∆q/2, ∑q ∆q = ∆Σ, can be computed from the nucleon matrix of the energy-
momentum tensor:

i
2
〈p′|q̄γ{µ

↔
Dν}q|p〉 = Aq

2(∆2) ū(p′)γ{µ p̄ν}u(p)−Bq
2(∆2)

i
2mN

ū(p′)∆α σα{µ p̄ν}u(p)

+ Cq
2(∆2)

1
mN

ū(p′)u(p)∆{µ∆ν} , (4)

Jq =
1
2
(
Aq

2(0) + Bq
2(0)

)
, (5)

where p̄ = (p + p′)/2 and ∆ = p′− p. In Fig. 3 I show the generalized form factors
(GFFs) A2, B2 and C2 together with a dipole fit, and in Fig. 4 I show the GFFs extrapo-
lated to ∆2 = 0, from which we can read off the total angular momentum J. All numbers
given refer to valence quarks. If we subtract the contribution of ∆q, which is known
from an independent calculation [4], we obtain

Lu+d = 0.03(7) Lu−d =−0.45(6) . (6)

While the total contribution of u and d quarks appears to be consistent with zero, this is
not the case for the individual contributions.
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FIGURE 3. The generalized form factors A2, B2 and C2 on the 243 48 lattice at β = 5.4, κ = 0.135.

0 0.2 0.4 0.6 0.8 1 1.2
mπ

2   [GeV2]
0

0.1

0.2

0.3

0.4

0.5

0.6

A
(u

-d
)

2   
(0

)

5.25
5.29
5.40

0 0.2 0.4 0.6 0.8 1 1.2
mπ

2   [GeV2]
0

0.1

0.2

0.3

0.4

0.5

0.6

A
(u

+d
)

2   
(0

)

5.25
5.29
5.40

0 0.2 0.4 0.6 0.8 1 1.2
mπ

2   [GeV2]
0

0.1

0.2

0.3

0.4

0.5

0.6

B
(u

-d
)

2   
(0

)

5.25
5.29
5.40

0 0.2 0.4 0.6 0.8 1 1.2
mπ

2   [GeV2]
-0.2

0

0.2

0.4

0.6

B
(u

+d
)

2   
(0

)

5.25
5.29
5.40

FIGURE 4. The generized form factors A2 and B2 extrapolated to ∆2 = 0.

SUMMARY

Due to space limitations I could show only a selection of results. For more details I refer
the interested reader to recent talks and publications of the QCDSF collaboration.
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