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What is Transversity ?

� Parton language : nucleon moving with (infinite) momentum along

��� direction but
polarized in the transverse direction
Transversity

��� � � 	�
 � � � the number of partons of flavor � and momentum fraction 	

with spin parallel to the spin of the nucleon minus the number antiparallel

�� � 	 
 �� � ��� � � 	 
 �� � ��� � � 	 
 ��

� Can be probed in

(1) Single transverse spin asymmetries in � � or � � scattering; azimuthal asymmetries..

(2) Double transverse spin asymmetries

Candidate processes �� �� � � � �� �
 �� �� �� �
 �� �� � � �  �

...
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Double Transverse Spin Asymmetry

��� � defined as :

��� � �
��� � � � � � � � � � � �� � � � ��

��� � � � � � � � � � � �� � � � ��

�

and � � transverse spin directions of the beam proton.

� ��� � depends only on transversity

� Small, because gluon initiated subprocesses contribute to the denominator but not to
the numerator (only exception : Drell-Yan)��� � for DY small at RHIC due to small

��� .

Martin, Schäfer, Stratmann, Vogelsang 98

� Also :

��� � in �� � �� � � � �� �

at GSI

Anselmino, Barone, Drago, Nikolaev; Efremov, Goeke, Schweitzer 04;
Shimizu, Sterman, Vogelsang, Yokoya 05

� Much lower energy

� �	� � large
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��� � for other processes :
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Soffer, Stratmann, Vogelsang 02

� LO estimate by saturating Soffer’s inequality at a low input scale; at higher scales
transversity is obtained by solving the evolution eqn.

� Hard to detect : good control over systematic and statistical errors necessary

� Higher order correction a must : reduction of scale dependency ..

� Further motivation : technical challenge for NLO calculation of cross sections involving
transversely polarized particles in the initial state
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Problem with Transverse Polarization Beyond LO

� Spin vectors introduce extra spatial directions : nontrivial

�

dependence

� Assuming both initial spin vectors in

� 	 direction in cm frame of the initial hadrons; for
a parity conserving theory with vector couplings

� � ��

� �� ��� � �

� �� 	 �
 ��
� �  ��

� �� ���

�

� �

cannot be integrated out !

� Difficult to use standard tools for doing phase space integrations at NLO (especially for
dimentional reg.)

� Need : A general technique to perform calculations at NLO with transverse polarization
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Projection Technique for Azimuthal Dependence

Integrate with �� �
 �

weight :

� �  ��
� �� ���

�

�
�

�

��
�

� � �� 	 �
 �� � � ��

� �� ��� � �

Consider prompt photon production as an example
LO � � �� �� �

Polarization for initial quark projected out by

	 � � � 
 � �� � 	 � � � 
 � �� �
�




 � � � � �� � 
� � 

Note : Covariant expression below give �� �
 �

in the c. m. frame of initial hadrons

� � ��� 
 � � 
 �� � �
�

�  	
�


 � � � � � �� � � � � �� � �
 	

�
� � � � �� �

�

AM, Stratmann, Vogelsang 03
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Projection Technique (Continued)

At LO for � �� �� � we have

� �  ��
� ��

� �� � � �

�  � � �

�
�
 �  �  � � � � � � � �� �� � 



� � � � � �� �� �� �  � � � � � ��  	 
��
��

�
 	

�

 � � � � � �� � � � � �� � �

 	
�

� � � � �� �
�

� Multiply

� � � � 

by

� � � � 
 � � 
 �� �

� Dependence on spin vectors :

� � � � � ��  � � � � �� � 
,

� � � � � �� � ��� � �� � � � � � �� � , and� � � � �� � 

� Expand tensors � �� � �� � �� � �� and � �� � �� into all possible tensors made up of the metric

tensor and the incoming partonic momenta
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Projection Technique (Continued)

� � � � � � � � ��  � � � � �� �  � � � �
  	 

� � 
�
 � � � � �� �  � � 

� � � � � � � �
�   	 

� �  


� � � � � � � � �� � ��� � �� � � � � � �� � � � � � �
 	


 �
� � � � �� �  � � � � �

 	

 � 


� �� � � � � �� � �� � �

(

� � ��
 �

) and � 
� � � � � � �

� Now integrate phase space over � � including the (now trivial) azimuthal part

� Particularly suitable at NLO : � � �� � �

� Dimensional regularization :

� � 	 � 
 � dimension
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Some Applications

� Prompt Photon Production

Two processes contribute at NLO :

� �� � � ��� � � � � � �� � � � � � � � � � � � � � � � �  � �� �

� � � � ��� � � � �

� Single Inclusive Pion Production

Four processes contribute at LO :

� � � � ��� � � � � � ��� � � � � � � ��� � � � � � ���

At NLO, there are

� ��� 	� corrections to these processes
And another process � � � � �

.

(i) Virtual corrections to LO

(ii)


 � �

processes
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Numerical Results : Single Inclusive Pion Production at GSI
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� Saturate Soffer’s inequality at a low input scale � � � � � � ��� �

using CTEQ6M and
GRSV, for higher scale transversity density is obtained by solving the evolution eq.

� Collider upgrade of GSI.
� � � collider at

�� � � 	 � �

GeV

� 	�
 � � � �

GeV (pol.
� �

%),

	 �
 � � �

GeV (pol.

� �

%)

� Scale : �� to
	 ��
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Numerical Results : Single Inclusive Pion Production at GSI
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� Integrated over rapidity � � � �� �� � 
 � �

� Statistical error :

� ���� � � �

� � �� ��	 
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Numerical Results : Single Inclusive Pion Production at RHIC
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ATT

� PHENIX detector at RHIC : pseudorapidity

� � � � � � � �

; � � 
 	 � � � � 
 	

and� � 
 	 � � � � � 
 	

� Substantial reduction of scale dependency at NLO

� Asymmetry very small
� � � �� � � � �� ��

� Scale : �� to
	 ��
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Numerical Results : Isolated Prompt Photon Production at RHIC
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� Isolation cuts to separate the photon signal from hadronic background

� PHENIX detector at RHIC : pseudorapidity

� � � � � � � �

; � � 
 	 � � � � 
 	

and� � 
 	 � � � � � 
 	

� Substantial reduction of scale dependency at NLO
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Summary

� Presented first calculation of cross sections and spin asymmetries for single inclusive
pion production in transversely polarized � � and �� � collisions at NLO

� �� � � sizable at GSI (

�� � � 	 � �

GeV); becomes smaller at NLO; interesting future
study : effect of resummation

� �� � � very small at RHIC, substantial reduction of scale dependency at NLO

� � �� � slightly larger, also substantial reduction of scale dependency at NLO

� Further possible applications of projection technique; �� �� � � �  �

, � �� � �� �

....
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