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Abstract. In this talk, we will present a QCD factorization theorem for the semi-inclusive deep-
inelastic scattering with hadrons in the current fragmentation region detected at low transverse
momentum.

Introduction

In recent years, there has been considerable experimental and theoretical interest
in semi-inclusive hard processes. Rigorous theoretical studies in this direction started
from the classical work on semi-inclusive processes ine+e− annihilation by Collins
and Soper [1], where a QCD factorization was proved, and non-perturbative transverse-
momentum-dependent (TMD) parton distributions and fragmentation functions were
introduced [1, 2]. In the past few years, gauge properties of the TMD parton distrib-
utions have been investigated [3, 4, 5]. More recently, the factorization theorems for
the semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan processes have been
re-examined in the context of the gauge-invariant definitions [6, 7]. In this talk, I will
present the theoretical results of [6].

The main result of [6] is a QCD factorization theorem for the SIDIS cross section
at low transverse momentum, accurate up to the power corrections(P2

h⊥/Q2)n and to
all orders in perturbation theory. For example, the leading spin-independent structure
function for SIDIS can be factorized as follows,

F(xB,zh,Ph⊥,Q2) = ∑
q=u,d,s,...

e2
q

∫
d2~k⊥d2~p⊥d2~̀⊥

×q
(
xB,k⊥,µ2,xBζ ,ρ

)
q̂T

(
zh, p⊥,µ2, ζ̂/zh,ρ

)
S(~̀⊥,µ2,ρ)

×H
(
Q2,µ2,ρ

)
δ 2(zh

~k⊥+~p⊥+~̀⊥−~Ph⊥) , (1)

whereµ is a renormalization (and collinear factorization) scale;ρ is a gluon rapidity
cut-off parameter;theµ andρ dependence cancels among various factors.In a special
system of coordinates in whichxBζ = ζ̂/zh, one hasζ 2x2

B = ζ̂ 2/z2
h = Q2ρ. The physical

interpretation of the factors are as follows:q is TMD quark distribution function;̂q is
the TMD quark fragmentation function depending on;H represents the contribution of
parton hard scattering and is a perturbation series inαs; and, finally, the soft factorS



comes from soft gluon radiations and is defined by a matrix element of Wilson lines in
QCD vacuum.

The Transverse Momentum Dependent Parton Distributions

Consider a hadron, a nucleon for example, with four-momentumP. Let (xP+,~k⊥)
represent the momentum of a parton (quark or gluon) in the hadron. In a non-singular
gauge (e.g. Feynman gauge), the TMD parton distributions can be defined through the
following density matrix [1, 4],

M±(x,k⊥,µ,xζ ,ρ) = p+
∫

dξ−

2π
e−ixξ−P+

∫
d2~b⊥
(2π)2ei~b⊥·~k⊥ (2)

×

〈
PS

∣∣∣ψq(ξ−,~b⊥)L †
v (±∞;ξ−,~b⊥)Lv(±∞;0)ψq(0)

∣∣∣PS
〉

S±(~b⊥,µ2,ρ)
.

The +(−) superscript is appropriate for DIS (Drell-Yan) process [4, 5].vµ is a time-
like dimensionless (v2 > 0) four-vector with zero transverse components(v−,v+,~0) and
v− À v+. Thus thevµ is a quasi light-cone vector, approachingnµ . The variableζ 2

denotes the combination(2P·v)2/v2 = ζ 2. Lv is a gauge link alongvµ ,

Lv(±∞;ξ ) = exp

(
−ig

∫ ±∞

0
dλv·A(λv+ξ )

)
. (3)

Here the non-light-like gauge link is introduced to regulate the light-cone singularities.
In the above definition, we have derived a soft factor defined as [6]:

S±(~b⊥,µ2,ρ) =
1
Nc
〈0|L †

ṽil (~b⊥,−∞)L †
vl j(±∞;~b⊥)Lv jk(±∞;0)Lṽki(0;−∞)|0〉 , (4)

wherei, j,k, l are color indices and new quasi light-cone vectorṽµ = (ṽ−, ṽ+,~0) has been
introduced withṽ−¿ ṽ+. Theρ parameter is defined asρ =

√
v−ṽ+/v+ṽ−À 1.

The TMD parton distribution is defined as such to absorb the collinear divergence
in the partonic processes. This has been checked by an explicit calculation at one-loop
order [6], where the soft divergence associated with soft gluons in the TMDs has been
cancelled out in the total result, and we are left with only the collinear singularity.

Factorization at One-loop Order

To demonstrate the factorization at one-loop order, one needs to calculate the TMDs
at one-loop order. Then, we have to show that the SIDIS cross section can be written in
terms of these TMDs plus the soft and hard factors.

The semi-inclusive DIS cross section under one-photon exchange is

dσ
dxBdydzhd2~Ph⊥

=
4πα2

ems
Q4

[
(1−y+y2/2)xBF(xB,zh,Ph⊥,Q2)+ · · ·] , (5)
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FIGURE 1. One-loop real diagrams for SIDIS.

whereF is the spin-independent structure function. In the above equation, we have
omitted other terms contributions which may depend on the spin of the hadrons and
their factorizations are similar [6].

The one-loop real corrections to the structure functionF are shown in Fig. 1. There
is no contribution to the hard scattering kernel from any of these diagrams. In Fig. 1a,
the soft-gluon radiation generates a transverse-momentum for the struck quark. There is
no contribution from the fragmentation function because the contribution from the final
state with a gluon in thenµ direction and a soft quark is power suppressed. Therefore, the
diagram must be factorizable into the parton distribution. Similarly for Fig. 1b, which
again can be reproduced by the factorization formula with the one-loop fragmentation
function and the soft factor S, and the tree-level parton distribution and the hard part.
For Fig. 1c and its hermitian conjugate, we find three distinct contributions: where the
first term corresponds to a gluon collinear to the initial quark, the second term a gluon
collinear to the final state quark, and the third term a soft gluon. All these terms are
reproduced by the factorization formula with one-loop parton distribution, fragmentation
function, and the soft factor. Similarly, we can show that the virtual diagrams can also be
factorized into different pieces in the factorization formula. From the vertex correction
to SIDIS cross section, we get the hard factor as

H(1)(Q2,µ2,ρ) =
αs

2π
CF

[(
1+ lnρ2) ln

Q2

µ2 − lnρ2 +
1
4

ln2ρ2 +π2−4

]
. (6)

Therefore we conclude that at the one-loop level, the general factorization formula
Eq.(1) holds.

All Order Argument and Discussions

For arguments toward a factorization to all orders, we follow the discussions in [1, 6].
The procedure for this argument is the following. First, for any high order Feynman
diagrams, using the power counting rules identifies the leading region contributions [8].
The leading regions clearly separate the soft, collinear, and hard gluons’ contributions
to the cross section (the cut diagram), where the soft gluons are only attached to the jet
functions (parton distributions and/or fragmentation functions); hard gluons are included
in the hard part; collinear gluons attached the jet functions to the hard part. On top of that,
we can further use the Grammer-Yennie approximation to factorize out the soft factor,
which can be expressed as matrix element of Wilson lines [1, 6], as defined above in
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FIGURE 2. All order factorization for SIDIS.

Eq. (4). The Ward Identity will be used to further factorize the collinear gluons from the
hard part, which results in a Wilson line (gauge link) association in the definition of the
jet functions. The variation of the gauge link gives the Collins-Soper evolution equation
for the jet functions [1]. After these procedures, the hard part only contains hard gluons,
which can be calculated from perturbative QCD. Once all these being done, we will
arrive at the factorization formula for SIDIS as in Eq. (1), and shown in Fig. 2.

Similar factorization formulas can be obtained for other semi-inclusive processes,
including back-to-back di-hadron production ine+e− annihilation [1], low transverse
momentum Drell-Yan [9], and di-jet or di-hadron correlation at hadron colliders [10].
The common feature of these semi-inclusive processes is that they all depend on the
TMD parton distributions and/or fragmentation functions. The global analysis of all
these processes will definitely provide us a unique picture about the nucleon structure,
and reveal the relevant parton orbital motion in the nucleon.
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