Spin Structure at High x

For the JLab Hall A, E99-117, E97-103 and CLAS Collaborations Jian-Ping Chen, Jefferson Lab DIS2005, Madison, April, 2005

- Introduction
- Valence quark neutron spin structure: A₁ⁿ at high x
- Spin-flavor decomposition: Δu/u and Δd/d
- Other neutron results: A₂ⁿ, g₁ⁿ, g₂ⁿ, and d₂ⁿ
- Preliminary A₁^p and A₁^d results
- Precision measurement of g₂ⁿ and higher twist effects
- Summary

Unpolarized Parton Distributions (CTEQ6)

- After 40 years DIS experiments, unpolarized structure of the nucleon reasonably well understood.
- High $x \rightarrow$ valence quark dominating

Polarized Parton Distributions (BB)

Figure 4: NLO polarized parton distributions at the input scale $Q_0^2 = 4.0$ GeV², ISET=4, (solid [15]. The shaded areas represent the fully correlated 1σ error bands calculated by Gaussian error propagation. The dark dotted lines indicate the positivity bound if reference is taken to line) compared to results obtained by GRSV (dashed-dotted line) [16] and AAC (dashed line) the distributions [27].

Valence Quark Spin Structure

 A_1 at high x

Prodictions for large X _{Bj} Proton Wavefunction (Spin and Flavor Symmetric) $\left p \uparrow\right\rangle = \frac{1}{\sqrt{2}} \left u \uparrow (ud)_{S=0}\right\rangle + \frac{1}{\sqrt{18}} \left u \uparrow (ud)_{S=1}\right\rangle - \frac{1}{3} \left u \downarrow (ud)_{S=1}\right\rangle$ $= \frac{1}{3} \left d \uparrow (ud)_{S=1}\right\rangle - \frac{\sqrt{2}}{3} \left d \downarrow (uu)_{S=1}\right\rangle$		Nucleon Model F2 ⁿ /F2 ^p d/u Δu/u Δd/d A1 ⁿ A1 ^p	SU(6) 2/3 1/2 2/3 -1/3 0 5/9	Valence Quark 1/4 0 1 -1/3 1 1	DOCD / 3/7 1/5 1 1 1 1 1
--	--	--	------------------------------	--------------------------------	--------------------------

Physics Overview	as X	 ^ !	
Diquark Spin State	Е ^п 2/FP	2 A ^D 1	A ⁿ 1
S=1 and S=0 equiprobable: SU(6)	2/3 d/u=1/2	5/9 <u>∆u</u> >2/3	0 <u>∆d</u> >-1/3
S=1 suppressed, S=0 retained F. Close, Phys. Lett. 43B (1973) 422. F. Close, An introduction to Quarks and Partons (1979)	1/4 d/u=0	u <u>∆u</u> + +	a +1 d>-1/3
$S = 1$, $S_z = 1$ suppressed $S = 1$, $S_z = 0$ and $S = 0$ retained G. Farrar, D. Jackson, Phys. Rev. Lett. 35(1975)1416 G. Farrar, Phys. Lett. 70B (1977)346	3/7 d/u=1/5	+	+ + d>1
Instantons! N. Kochelev, hep-ph/9711226			0~

World Data on A₁ⁿ and Models

- SU(6): A₁n=0
- Valence quark models

u└∀

- pQCD assuming HHC
- (hadron helicity conservation)
- PDF fits (LSS)
- Statistical model
- Chiral Soliton model
- Local duality model
- Cloudy bag model

Need precision data at high x

JLab E99-117

Precision Measurement of A₁ⁿ at Large **x**

Spokespersons: J. P. Chen, Z. -E. Meziani, P. Souder, PhD Student: X. Zheng

- Precision A_1^n data at high x 2.7GeV² < Q² < 4.8 GeV², W > 2 GeV
- Extracting valence quark spin distributions
- Test our fundamental understanding of valence quark picture
 - SU(6) symmetry
- Valence quark models
- pQCD (with HHC) predictions
- Other models: Statistical Model, Chiral Soliton Model, PDF fits,
- Quark orbital angular momentum
- Crucial input for pQCD fit to PDF

E99-117 A₁ⁿ Results

- First precision A_1^n data at x > 0.3 \leq^-
- Comparison with model calculations
- SU(6) symmetry
- Valence quark models
- pQCD (with HHC) predictions
- Other models: Statistical model, Chiral Soliton model, PDF fits, ...
- Crucial input for pQCD fit to PDF
- PRL 92, 012004 (2004)

Polarized Quark Distributions

- Combining A₁ⁿ and A₁^p results
- Valence quark dominating at high x
- u quark spin as expected
- d quark spin stays negative!
- Disagree with pQCD model calculations assuming HHC (hadron helicity conservation)
- Quark orbital angular momentum
- Consistent with valence quark models, statistical model or pQCD PDF fits

Comparison with models

- Chiral Soliton Models
- G.A. Miller's model with quark orbital angular momentum, which gives an explanation to the proton G_E^p/G_M^p results.
- pQCD: factorization at large x, NLO, Resummation, ...?

A₂ⁿ results

- By-product
- Precision better than the world best results
- Also g₁ⁿ and g₂ⁿ results
- Improved d₂ⁿ precision
 by a factor of 2:
 d₂ⁿ=0.0062 ± 0.0028
- PRC 70, 065207 (2004)

Precision g₁ⁿ and g₂ⁿ results

¥0.0

Discussion

Precision data of A₁ⁿ and g₁ⁿ at high x:

A₁ⁿ positive above x=0.5

- Extracted $\Delta u/u$ and $\Delta d/d$: $\Delta d/d$ stays negative!
- Disagree with leading order pQCD model (HHC) Quark orbital angular momentum important
- g_1^n , g_2^n , A_2^n data
- Extracted d₂ⁿ, a factor of 2 improvement

Results published in PRL 92, 012004 (2004), PRC 70, 065207(2004) and in the news:

AIP Physics News Update, Physics Today Update, Science online (Science Now), Science News, DNP web featured article

A₁ with 12 GeV Upgrade

A₁^p, A₁^d at high x

Preliminary results from JLab CLAS (S. Kuhn, *et al.*)

Preliminary CLAS A₁^p results: W>2

Preliminary CLAS A₁^d results: W>2

Precision measurement of g₂ⁿ

Higher twist effects: quark-gluon correlations

Quark-Gluon Correlations

$$g_{2}^{WW}(x,Q^{2}) = g_{2}^{WW}(x,Q^{2}) + \overline{g}_{2}(x,Q^{2})$$
$$g_{2}^{WW}(x,Q^{2}) = -g_{1}(x,Q^{2}) + \int_{x}^{1} g_{1}(y,Q^{2}) \underbrace{\swarrow}{y}$$

- In simple partonic picture g₂(x)=0
- Wandzura and Wilczek have shown that g_2 can be written in two parts:
- -twist-2 contributions given by g₁
- the other originating from quark-gluon correlations (twist-3)

$$\mathcal{Z}(Q^{2}) = \int_{0}^{1} x^{2} \left[2g_{1}^{n}(x,Q^{2}) + 3g_{2}^{n}(x,Q^{2}) \right] dx \qquad d_{2} = \left(2\chi_{B} + \chi_{E} \right) / 3$$

Jefferson Lab Hall A Experiment E97-103

Precision Measurement of the Neutron Spin Structure Function $g_2^n(x,Q^2)$:

A Search for Higher Twist Effects

- Precision g_2^n , $0.57 < Q^2 < 1.34$ GeV², W > 2 GeV, at $x \sim 0.2$.
- Direct comparison to *twist-2* g₂^{ww} prediction using world g₁ⁿ data.
- nucleon structure beyond simple parton model (e.g. quark-gluon correlations). Quantitative measurement of higher twist effects provides information on

E97-103 Results: g₂ⁿ vs. x

×

Improved precision of g₂ⁿ by an order of magnitude

E97-103 results: g₂ⁿ vs. Q²

×

Measured g_2^n consistently higher than g_2^{ww}

Agree with NLO fit to world data, evolved to our Q² •

×

Summary

- Precision spin structure data at high x from JLab
- Valence quark neutron spin structure
- A₁ⁿ at high x, an order of magnitude improvement:
- Crucial input to fundamental understanding of valence quark picture: first time clearly goes positive
- Valence spin-flavor decomposition: <u>Au/u</u>, <u>Ad/d</u>
- Disagreement with pQCD (HHC) → Quark OAM important
- A₂ⁿ, g₁ⁿ, g₂ⁿ
- d₂ⁿ: a factor of 2 improvement
- Proton/deuteron results: A_1^p and A_1^d
- Precision measurement of g₂ⁿ at low Q²
- An order of magnitude improvement in precision
 - g₂ⁿ consistently higher than g₂^{WW}
- Higher twist effects: quark-gluon correlations

A₁ⁿ and ∆u/u, ∆d/d results in the news

- Physics News Update, 12/18/2003
 'Bringing the Nucleon into Sharper Focus'
- Science Now , 12/23/2003 'Quarks in a Surprising Spin'
- Science News, 1/3/2004
 'Topsy Turvy'
- Physics Today Update, 2/2004 'Spinning the Nucleon into Sharper Focus'
- APS-DNP current research topic, 5/5/2004 'The Cain C+motime of the Nucl
- 'The Spin Structure of the Nucleon in the Valence Quark Region'

From 3 He to Neutron (cont.)

CONVOLUTION APPROACH

C. degli Atti et.al., Phys. Rev. C48, 968(1993); Phys. Lett. B404, 223(1997)

- ³He consists S, S', D
- Three body calculation using Fadeev wavefunction

$$\begin{split} \tilde{g}_{1}^{\tilde{n}} &= \frac{1}{\rho_{n}} (g_{1}^{3} \mathrm{He} - 2\rho_{p} g_{1}^{p}) \\ \tilde{\rho}_{n} &= \frac{W_{1}^{3} \mathrm{He}}{W_{1}^{3}} \frac{1}{\rho_{n}} (A_{1}^{3} \mathrm{He} - 2\frac{W_{1}^{p}}{W_{1}^{3} \mathrm{He}} \rho_{p} A_{1}^{p}) \end{split}$$

COMPLETE ANALYSIS

F. Bissey et. al., hep-ph/0109069

• S, S', D, Δ isobar in ³He wavefuntion

$$A_1^n = \frac{F_2^{^3\text{He}}}{P_n F_2^n (1 + \frac{0.056}{P_n})} [A_1^{^3\text{He}} - 2\frac{F_2^p}{F_2^{^3\text{He}}} P_p A_1^p (1 - \frac{0.014}{2P_p})]$$