Jet Cross Sections in D^{*±} Photoproduction with ZEUS

Takanori Kohno (University of Oxford) for the ZEUS Collaboration

XIII International Workshop on Deep Inelastic Scattering Madison, Wisconsin, USA April 27 – May 1, 2005

Introduction

- Charm production in *ep* collisions
 - Hard scale is provided by charm mass (m_c). → pQCD applicable.
 - Study the parton dynamics of the hard scattering and gluon/charm PDFs.
 - Higher order radiation and hadronisation are also necessary for predictions.
- Inclusive jet cross section in D^{*} photoproduction
 - Reduce uncertainty from hadronisation effects.
 - Wide kinematic range of measurement in pseudo-rapidity.
 - $d\sigma/dE_T^{jet}$ and $d\sigma/d\eta^{jet}$ reflect the underlying parton dynamics.
- Dijet correlations $(d\sigma/dx_v^{obs}, d\sigma/d(p_T^{jj})^2, d\sigma/d\Delta\phi^{jj}, d\sigma/dM^{jj})$
 - More stringent test of the QCD using new variables.
 - p_T of the dijet system (\underline{p}_T^{ji}) and azimuthal difference of the two jets $(\underline{\Delta \phi^{jj}})$ are particularly sensitive to higher order effects.
 - The reconstruction of $\underline{x}_{\underline{y}}^{obs}$ allows to measure direct- and resolved-enriched samples separately.

(Results are compared to NLO QCD calculations and MC models.)

Charm Photoproduction at HERA

In photoproduction ($Q^2 < 1 \text{ GeV}^2$), there are two types of subprocesses

- direct photon process (photon participates directly in the hard scattering)

- resolved photon process (partons in the photon participates in the hard scattering)

Kinematic region of the measurement

2005/04/28

DIS 2005 (4/27 - 5/1, Madison)

NLO QCD Calculations

'Massive' scheme (FMNR)

• 3 active flavors. (charm produced dynamically)

• Proton PDF : CTEQ5M1, photon PDF : AFGHO

•
$$m_c = 1.5 \text{ GeV}, \mu_F = \mu_R = m_T (m_T^2 = m_c^2 + \langle p_{T,c}^2 \rangle)$$

• Use Peterson function with $\epsilon = 0.035$ for the fragmentation into a D^{*}.

- k_T jet algorithm over final state partons.
- Hadronisation correction by MC (HERWIG & PYTHIA).
- Estimation of theoretical uncertainty
 - $m_c = 1.3 \text{ GeV}, \mu_R = m_T/2 \text{ (upper)},$
 - $m_c=1.7$ GeV, $\mu_R=2m_T$ (lower)

Beauty cross section

- $b \rightarrow D^* + X$
- Not added for inclusive cross sections.
- Used PYTHIA reweighted to massive NLO QCD predictions, for dijet cross sections.

<u>'Massless' scheme (Heinrich & Kniehl)</u>

- 4 massless flavors.
- Proton PDF: MRST03, photon PDF: AFG04

• $m_c=1.5 \text{ GeV}, \mu_R=m'_T$ ($m'_T{}^2=m_c{}^2+(p_T{}^{D^*})^2$), $\mu_F=M_F=2m'_T$ •Estimation of theoretical uncertainty

- $\mu_{\rm R} = m'_{\rm T}/2$, $\mu_{\rm F} = M_{\rm F} = 4m'_{\rm T}$ (upper),
- $\mu_R = 2m'_T$, $\mu_F = M_F = m'_T$ (lower)
- Only calculable for variables using D* and untagged jet.
- No beauty contribution shown in the plots, since calculation not available.

$d\sigma/dE_T^{jet}$ for D*-tagged/untagged jets

Inclusive jet cross section $(d\sigma/d\eta^{jet})$

- Shapes of $d\sigma/d\eta^{jet}$ agree with the NLO QCD predictions with hadronization corrections for high and low E_T^{jet} regions.
- No significant excess in the forward region seen in jet cross sections.
- Untagged jet distribution extends up to $\eta^{jet}=2.4$.

Dijet cross sections in D^* photoproduction

 $\Delta \varphi^{jj} = \pi$ and $(p_T^{jj})^2 = 0$ for LO 2 $\rightarrow 2$ process. Deviation from these values is due to higher order radiation effects which is implemented as,

- parton shower (PS) algorithm in LO+PS MC like HERWIG and PYTHIA.
- 2 \rightarrow 3 real correction in NLO QCD calculations.
- $O(\alpha_s^2)$ is the "Leading Order" for $\Delta \varphi^{jj} \neq \pi$ and $(p_T^{jj})^2 \neq 0$.

Dijet Cross Sections

• Good description of $d\sigma/dx_{\gamma}^{obs}$ and $d\sigma/dM^{jj}$ by massive NLO QCD.

• However, a significant excess is observed at large $p_T{}^{jj}$ and low $\Delta \phi^{jj}$. These are the regions where higher order effects are expected to become larger.

Estimation of beauty $(b \rightarrow D^* + X)$

• Use PYTHIA to estimate the beauty contribution.

• p_T distributions of the two stable B hadrons in PYTHIA were reweighted to the massive NLO QCD distributions.

• Massive NLO QCD calculation was done with $m_b=4.75$ GeV,

 $\mu_{F,R} = m_b^2 + \langle p_{T,b}^2 \rangle$

• Use Peterson function with $\varepsilon = 0.0035$ for the fragmenation into B hadrons.

$d\sigma/d\Delta\phi^{jj}$

Even higher order correction or parton shower algorithm is needed.

 $d\sigma/d(p_T^{jj})^2$

 $O(\alpha_s^2)$ correction to $2 \rightarrow 2$ process is not sufficient.

Even higher order correction or parton shower algorithm is needed.

$d\sigma/dM^{jj}$

 $d\sigma/dx_v(D^*,jet)$

Summary & Conclusion

Summary

- Inclusive jet cross sections in D* photoproduction is described well by both massive and massless NLO QCD predictions with hadronisation correction.
- Dijet correlation cross sections show that massive NLO QCD prediction underestimates the measurement at low $\Delta \phi^{jj}$ and large $(p_T^{jj})^2$, in particular, in the resolved-enriched sample.
- HERWIG (LO+PS MC) describes the shape of $d\sigma/d(p_T^{jj})^2$ and $d\sigma/d\Delta \phi^{jj}$ very well, although the normalisation is underestimated by a factor of 2.5.

Conclusion

- Jet cross sections in D* photoproducion are, in general, described reasonably well by the NLO QCD predictions.
- For dijet correlation variables, $O(\alpha_s^2)$ calculation is not sufficient. Even higher order calculations or parton shower algorithm has to be incorporated into the NLO QCD framework. MC@NLO might be a solution.