Photoproduction of D^* Mesons and Jets with H1

Gero Flucke

DESY

- Charm Photoproduction at HERA
- Data Selection: D^* +Jet
- QCD Calculations
- Cross Sections

Charm Photoproduction at HERA

photon-gluon fusion

 $s = (k+P)^{2} \sqrt{s} \approx 320 \text{ GeV}:$ centre-of-mass energy $Q^{2} = -q^{2} \qquad \gamma \text{ virtuality}$ $x = \frac{Q^{2}}{2 \cdot q \cdot P}$ Bjorken scaling variable $y = \frac{q \cdot P}{k \cdot P}$ inelasticity $Q^{2} = (q+P)^{2} \qquad W_{\gamma p}:$ $\gamma p \text{ centre-of-mass energy}$

•
$$Q^2 < 1 \,\,{
m GeV^2}$$
:

quasi real photon

 \Rightarrow photoproduction

D^* +Jet Photoproduction

Leading order:

- heavy charm ($m_c \approx 1.5 \text{ GeV}$) provides hard scale: test QCD
- (Anti-)Charm quark tagged by $c \to D^* \to D^0 \pi_s \to K \pi \pi_s$
- tag second hard parton by a jet
- \triangleright D^* +jet where jet does *not* contain D^* meson:

deeper insight in production process

(Tagged) Photoproduction

 $Q^2 < 1 \ {\rm GeV}^2 \Rightarrow$ no scattered electron in main detector

detection in electron tagger (calorimeter) at small angle (< 5 mrad) outside H1

visible range				
Q^2	$< 0.01 ~{ m GeV^2}$			
<i>y</i>	0.29 < y < 0.65			
$W_{\gamma p}$	$171 < W_{\gamma p} < 256 \mathrm{GeV}$			

$$W_{\gamma p} = \sqrt{y \cdot s}$$

D^* Selection

• H1 data 1999 & 2000
$$(e^+p)$$

 $\Rightarrow \mathcal{L} = 51.1 \text{ pb}^{-1}$

•
$$D^{*\pm} \to D^0 \pi_s^{\pm} \to K^{\mp} \pi^{\pm} \pi_s^{\pm}$$

 $\diamondsuit \ p_t(D^*) > 2.0 \text{ GeV} \\ \diamondsuit \ |\eta(D^*)| < 1.5$

•
$$N(D^*)$$
 from fit in
 $\Delta m = m(K\pi) - m(K\pi\pi_s)$:
gaussian signal + background

Jet Selection

QCD Calculations

	k_t factorisation	collinear factorisation	
	leading order (with parton shower)	leading order (with parton shower)	next-to-leading order
massive (no $\alpha_s \ln\left(\frac{p_t}{m_c}\right)$)	CASCADE	PYTHIA • direct • resolved	FMNR
massless (no $\alpha_s \ln\left(\frac{m_c}{p_t}\right)$)	~~~~~ c	• c excitation	ZMVFNS
	γ c included in all calculations		
	p		8

Differential Cross Sections: $d\sigma/dp_t(D^*)$, $d\sigma/dp_t(Jet)$

- uncertainty of the calculations: scale (μ_r, μ_f) and charm mass (m_c) variations
- all calculations fit within uncertainties
- CASCADE predicts slightly harder p_t spectra

Gero Flucke - DIS 2005, Madison

Differential Cross Sections: $d\sigma/d\eta(D^*)$, $d\sigma/d\eta(Jet)$

Differential Cross Section: $d\sigma/d\Delta\phi(D^*, \text{Jet})$

- \Box infrared sensitivity \Rightarrow merging highest bins for NLO
- □ one parton radiation from NLO (effectively LO) seems not sufficient

Summary

- *D**+jet photoproduction with H1: testing QCD at low transverse momenta
- comparing data with various QCD calculations
 - data reasonably described by quite different theoretical approaches
 - "forward" ($\eta > 0$) jets often seem to be *not* caused by charm
 - $\Delta \phi(D^*, \text{jet})$ tends to need more than "just NLO"
- \Rightarrow higher order radiation seems relevant in charm photoproduction