

Charm Physics at BaBar

DIS 2005 April 27-May 1, 2005 Madison, USA

Chunhui Chen University of Maryland For the BaBar Collaboration

Chunhui Chen, University of Maryland

DIS 2005, Madison, Wisconsin

The BaBar Experiment

- Detector optimized for B physics
- Excellent tracking
- Excellent particle identification
- Excellent γ , π^0 detection
- Data:
 - ~90% @ \sqrt{s} =10.58 GeV Y(4S)
 - ~10% @ \sqrt{s} =10.54 GeV qq
- 244 fb⁻¹ recorded so far

256M B \overline{B} pairs

317M cc events

BaBar is also a charm factory

Ongoing Charm Physics at BaBar

BaBar has extensive charm physics program:

- Charm mixing and direct CP violation.
 - e.g.: Hadronic D⁰ mixing, Semileptonic D⁰ mixing, D⁺ \rightarrow K⁺K⁻ π ⁺,
- Rare and forbidden decays. e.g. : $D^0 \rightarrow l^+ l^-$,
- Spectroscopy. e.g. : $D_{sJ}(2317), D_{sJ}(2632), \dots$
- Dalitz plot analyses. e.g. : $D^0 \rightarrow K^0_s \pi^+ \pi^-$, $D^0 \rightarrow K^0_s K^+ K^-$,....
- Production and decay branching fraction measurements.

e.g. : Cabibbo suppressed Λ_c decays, $\Xi_c^0 \rightarrow \Omega^- K^+$, $\Xi_c^0 \rightarrow \Xi^- \pi^+$,

- Measurement of charm hadron mass values. e.g. : Λ_c mass,
- And more
- Present a few of the most recent measurements (highlighted in red)
- Use of charge conjugate states is implicit throughout, unless stated otherwise.

Semileptonic Charm Mixing

- Neutral D⁰ mixing is expected to be small ($\sim 10^{-3}$) in SM
- New physics effects may enhance the mixing rate
- Search for mixing using semileptonic charm decays
 No contamination from Doubly-Cabibbo-Suppressed decay

Wrong-sign mixed decays

$$D^{*+} \rightarrow D^{0} \pi^{+}_{tag}$$

$$\downarrow \overline{D}^{0} \rightarrow K^{+}e^{-}\overline{\nu}$$

$$D^{*-} \rightarrow \overline{D}^{0} \pi^{-}_{tag}$$

$$\downarrow D^{0} \rightarrow K^{-}e^{+}\nu$$

$$R_{mix} = \Gamma(D^0 \to \bar{D}^0 \to K^+ e^- \bar{\nu}) / \Gamma(D^0 \to K^- e^+ \nu)$$

Using $\Delta m=m(D^0\pi^+)-m(D^0)$ and D^0 proper time to separate signal and background

 $D^{*-} \rightarrow \overline{D}^{0} \pi^{-}_{tag}$ $\downarrow K^{+}e^{-}\overline{\nu}$

Semileptonic Charm Mixing (87fb⁻¹)

 $\Delta m = m(D^0\pi^+) - m(D^0)$

0.155

0.16 deltaMass (GeV/c2)

Search for $D^0 \rightarrow l^+ l^-$

- Small or zero branching fraction in SM
- New Physics may enhance these e.g.: R-parity violating SUSY
- Search for $D^0 \rightarrow e^+e^-$, $\mu^+\mu^-$, $e^+\mu^-$
 - Blind analysis
 - Normalized to $D^0 \rightarrow \pi^+ \pi^-$
 - $D^{*+} \rightarrow D^0 \pi^+$ tag to reduce background
 - UL set by Feldman-Cousins method

$$\begin{split} \mathcal{B}(D^0 \to e^+ e^-) &< 1.2 \times 10^{-6} ~~90 \,\% \,\mathrm{C.L} \\ \mathcal{B}(D^0 \to \mu^+ \mu^-) &< 1.3 \times 10^{-6} ~~90 \,\% \,\mathrm{C.L} \\ \mathcal{B}(D^0 \to e^\pm \mu^\mp) &< 8.1 \times 10^{-7} ~~90 \,\% \,\mathrm{C.L} \end{split}$$

A factor of 2-10 improvement over previous measurements

Phys.Rev.Lett. 93 (2004) 191801

Chunhui Chen, University of Maryland

DIS 2005, Madison, Wisconsin

Search for D_{sJ}(2632)

SELEX reported the observation of a new heavy state decaying to

 $D^+_{sJ}(2632) o D^+_s \eta \;, \;\; D^+_{sJ}(2632) o D^0 K^+$ Phys.Rev.Lett.93:242001 (2004)

Chunhui Chen, University of Maryland

Search for $D_{sJ}(2632) \rightarrow D_{S}^{+} \eta$

Correlated $D_s^+\eta$ spectrum (i.e. after 2D background subtraction)

BaBar sees no evidence for $D_{sJ}^+(2632) \to D_s^+\eta$ in 125 fb⁻¹ data

Chunhui Chen, University of Maryland

DIS 2005, Madison, Wisconsin

hep-ex/0408087

Search for $D_{sJ}(2632) \rightarrow D^{0}K^{+}$

BaBar sees no evidence for $D^+_{sJ}(2632) \to D^0 K^+$ in 125 fb⁻¹ data

hep-ex/0408087

Chunhui Chen, University of Maryland

Search for $D_{sJ}(2632) \rightarrow D^{*+}K_{s}$

BaBar sees no evidence for $D_{sJ}^+(2632) \rightarrow D^{*+}K_s$ in 125 fb⁻¹ data

hep-ex/0408087

Study of Ξ^0_c Production and Decays

Chunhui Chen, University of Maryland

DIS 2005, Madison, Wisconsin

Study of Ξ^{0}_{c} Production and Decay

 Ξ_c^0 produced in both $e^+e^- \rightarrow b\overline{b}$ (B mesons) and $e^+e^- \rightarrow c\overline{c}$. Study the production using $p^*(\Xi_c^0)$ in e^+e^- c.m. frame

Measurement of Charm Hadron Mass

Charm hadron masses are known to a precision ~ 0.5-1.5 Mev, e.g.:

$$\begin{split} m(D^0) &= 1864.6 \pm 0.5 \ MeV/c^2 \\ m(D^+) &= 1869.4 \pm 0.5 \ MeV/c^2 \\ m(D_s) &= 1869.4 \pm 0.5 \ MeV/c^2 \\ m(\Lambda_c) &= 2284.9 \pm 0.6 \ MeV/c^2 \\ m(\Xi_c^+) &= 2466.3 \pm 1.4 \ MeV/c^2 \\ m(\Xi_c^0) &= 2471.8 \pm 1.4 \ MeV/c^2 \end{split}$$

- Most measurements done 15-20 yrs ago with $O(10^2-10^3)$ events
- BaBar has large sample of fully-reconstructed charm hadrons
- Well understood detector performance

Accurate measurements of charm hadron mass

Precision Measurement of $\Lambda_{\rm c}$ Mass

Chunhui Chen, University of Maryland

Decay mode:

$$\Lambda_c \to \Lambda \bar{K}^0 K^+, \Lambda \to p\pi^-, \bar{K}^0 \to \pi^+\pi^-$$

$$\Lambda_c \to \Sigma^0 \bar{K}^0 K^+, \Sigma^0 \to \Lambda \gamma$$

Small Q value (minimize sys error)

Dominant systematic error sources:

- Detector Material Model
- Magnetic field
- Detector alignment

Cross check the systematics with larger control sample:

K_s→ $\pi^+\pi^-$: ~2.5×10⁶ signal events Λ →p π^- : ~3.2×10⁶ signal events Λ_c^+ →pK⁻ π^+ : ~1.5×10⁶ signal events Λ_c^+ →pK_s: ~2.4×10⁵ signal events

Measurement of $\Lambda_{\rm c}$ Mass

The preliminary results:

 $\begin{array}{lll} & \Lambda_{c} \rightarrow \Lambda K^{0}{}_{S}K^{+} & m(\Lambda_{c}) = 2286.501 \pm 0.042 \ (\text{stat.}) \pm 0.144 \ (\text{syst.}) \ \text{MeV/c}^{2} \\ & \Lambda_{c} \rightarrow \Sigma^{0} K^{0}{}_{S}K^{+} & m(\Lambda_{c}) = 2286.303 \pm 0.181 \ (\text{stat.}) \pm 0.126 \ (\text{syst.}) \ \text{MeV/c}^{2} \\ & \bullet \ \text{Control sample} \\ & \Lambda_{c} \rightarrow p K^{-} \pi^{+} & m(\Lambda_{c}) = 2286.393 \pm 0.018 \ (\text{stat.}) \pm 0.447 \ (\text{syst.}) \ \text{MeV/c}^{2} \\ & \Lambda_{c} \rightarrow p K_{S} & m(\Lambda_{c}) = 2286.361 \pm 0.034 \ (\text{stat.}) \pm 0.428 \ (\text{syst.}) \ \text{MeV/c}^{2} \\ & \bullet \ \text{Combined result:} \end{array}$

due to large Q value

$m(\Lambda_c)=2286.46 \pm 0.14 \text{ MeV/c}^2$

- The result is four times more precise than the PDG value (2284.9±0.6 MeV/c2) and about 2.5σ higher
- Λ_c study can be used as a basis for improving other charm hadron mass measurements

Conclusion

- BaBar has a rich charm physics program
- Have presented a few results of the most recent analyses
 - Semileptonic D⁰ mixing
 - Search $D^0 \rightarrow l^+ l^-$
 - Search for D_{sJ}(2632)
 - $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}, \ \Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$
 - Λ_c mass measurement

Much more to come