Charm production at low Q² with ZEUS

Gayane Aghuzumtsyan

on behalf of

Collaboration

XIII International Workshop on Deep Inelastic Scattering Madison, Wisconsin USA, April 27th – May 1st, 2005

Outline

- Introduction
- BPC detector for low Q^2
- Cross sections
- Theoretical predictions
- Summary

Introduction

 $\sqrt{s} \approx 318 \, GeV$

Kinematic Variables

4-mom. transfer:
$$Q^2 = -q^2 = -(k - k')^2$$

Fraction of energy transfer: $y = \frac{P \cdot q}{P \cdot k}$

 γp CMS energy: $\mathbf{W} = (\mathbf{P} + \mathbf{q}) \cong \sqrt{(4 \mathbf{E}_e \mathbf{E}_p \mathbf{y})}$

Deep Inelastic Scattering (DIS)

 $Q^{2} > 1 \ GeV^{2}$

Photoproduction (PHP)

 $Q^2 < 1 \ GeV^2$

April 27th - May 1st

Gayane Aghuzumtsyan, DIS05

4-

Motivation

- Measurement of charm production in Q² region just below 1 GeV²
- Theoretical interest in the transition region between DIS and PHP
- D* production dominated by Boson Gluon Fusion (BGF)
- Do p*QCD* models still describe the data here?

PHP and DIS results

Charm results reasonably described by pQCD calculation

April 27th - May 1st

coverage of kinematic plane by ZEUS \Rightarrow

Low Q^2 in ZEUS (charm production)

We can reach low Q^2 :

- Beam Pipe Calorimeter (BPC)
 - covers small area near beam pipe
- Shifted vertex runs
 - in 2000 few runs were taken with the *ep* vertex shifted by +70 *cm*
 - covers region in x & Q² between
 BPC and Calorimeter acceptance
- Initial State Radiation (ISR)

BPC – detector for low- Q^2 physics located at $z = -295 \ cm$ from interaction point 18 mrad < Θ < 32 mrad 0.05 GeV²< Q^2 < 0.7 GeV²

April 27th - May 1st

BPC Contribute to Event Reconstr.

 Kinematic variables reconstructed by *e*-method:

 E_{BPC} and $\Theta_{BPC} \Rightarrow Q^2$, y and x

$$Q^{2} = 2E_{e}E_{BPC}(1 - \cos(\Theta_{BPC}))$$
$$y = 1 - \frac{E_{BPC}\cos^{2}(\Theta_{BPC}/2)}{E_{p}(1 - E_{BPC}\sin^{2}(\Theta/2))}$$

DATA/MC

Event Selection / MC

- |z_{vertex}| < 50 *cm*
- BPC cuts
 - $E_{BPC} > 4 \ GeV$
 - fiducial area cut
- Kinematic cuts
 - 0.02 < *y* < 0.85
 - $0.05 \ GeV^2 < Q^2 < 0.7 \ GeV^2$
 - 35 GeV < E p_z < 65 GeV
- D* cuts
 - *p_t*(D*) > 1.5 *GeV*
 - $|\eta(D^*)| < 1.5$
 - $p_t(\pi_s) > 0.12 \ GeV$
 - $p_t(K, \pi) > 0.45 \ GeV$
 - Variable window for M(D⁰)
 - $1.79 \dots 1.82 \text{ GeV} < M(D^0) < 1.91 \dots 1.94 \text{ GeV}$
 - 0.1435 *GeV* < △ *M* < 0.1475 *GeV*

- HERWIG
 Charm and Beauty MC
 - Includes Resolved + Direct Processes

PYTHIA, RAPGAP

Charm and Beauty MC is used for systematics

- Data from 98-00
- $L = 81.9 \ pb^{-1}$
- Clear D* signal observed
- Unbinned maximum likelihood fit used for number of events throughout
- Fit to ∆M signal gives 250 ± 22 events

Total cross sections $\sigma_{m > c'D*Y} = \frac{N_{D*}}{N_{D*}}$

$$\sigma_{ep \to e'D^*X} = \frac{D^*}{A \cdot BR(D^{*\pm} \to K\pi\pi_s) \cdot L}$$

Kinematic range: $0.05 \ GeV^2 < Q^2 < 0.7 \ GeV^2$; 0.02 < y < 0.85; $1.5 < p_t(D^*) < 9 \ GeV$; $|\eta(D^*)| < 1.5$

Measured cross section $\sigma = 10.1 \pm 1.0 \text{ (stat)}^{+1.1}_{-0.8} \text{ (syst)} \pm 0.23 \text{ (BR)} nb$

Calculated cross section $\sigma_{HVQDIS} = 8.6 + 1.9 - 1.8$ (syst) *nb*

April 27th - May 1st

Systematic uncertainties

- 1 **RAPGAP:** instead of HERWIG MC
- 2, 3 HW \pm RS \pm DR: direct and resolved varied by \pm 30%
- 4, 5 $X_{BPC} \pm 1$: shift of BPC X position in MC by $\pm 1 mm$
- 6, 7 $\mathbf{Y}_{BPC} \pm 1$: shift of BPC Y position in MC by $\pm 1 mm$
- 8, 9 ± CTD Scale: CTD momentum scale variation ± 0.3% in MC
- **10, 11 BPC fiducial area:** fiducia area extended or reduced by ±1 *mm*
- 12, 13 $\Delta M(D^{\circ})$: $\Delta M(D^{\circ})$ window decreased or increased by 10 *MeV*
- 14, 15 $\pm E_{BPC}$ Scale: variation of BPC energy by $\pm 1\%$ in MC
- **16, 17** $\pm \sigma$ **fixed fit:** σ_i varied by $\pm \Delta \sigma$
- 18, 19 ± CAL E: CAL energy scale variation by ± 3% in MC
- 20,21 $p_t(D^*)/E_t \pm 0.02$
- 22, 23 ± CTD res: variation of CTD track resolution by + 20% or 10% in MC
- 24, 25 LUMI ± 2.25

Cross sections vs. y

- fragmentation ⇒ Peterson model
- ε = 0.035
- nominal mass $m_c = 1.35 \text{ GeV}$
- normalisation & factorisation

$$\mu = \sqrt{Q^2 + 4m_c^2}$$

- proton PDFs parametrisation
 ⇒
 ZEUS NLO QCD fit & CTEQ5F3
- $(Q^2/4 + m_c^2) < \mu^2 < 4(Q^2 + 4m_c^2)$ $1.2 < m_c < 1.5 \ GeV$ $0.02 < \varepsilon < 0.05$

Cross sections vs. $p_t(D^*) \& \eta(D^*)$

Cross sections vs. Q^2

0.02 < y < 0.7 (0.85) N (D*) = 239 ± 23

April 27th - May 1st

Summary

- D* production has been measured at low Q² with BPC at ZEUS
- Cross sections as a function of Q^2 , p_t , η and γ were measured in transition region between PHP and DIS
- Results match HVQDIS predictions
 - Results extend previous ZEUS measurements below Q² of 1.5 GeV²
 - NLOQCD pQCD describes charm production in DIS over 4 orders of magnitude in Q2