Upsilon production and µ-tagged jets in DØ

Horst D. Wahl
Florida State University
(DØ collaboration)
29 April 2005

DIS 2005
27 April to 1 May 2005
Madison

Outline:

- Tevatron and DØ detector
- Upsilon Y(1S)
- High p_t jets with μ tag
- Summary

- peak luminosity in 2005 above
 10³² cm⁻² s⁻¹
- DØ collected > 690 pb⁻¹
- Results shown use 150 300 pb⁻¹

The DØ Detector

DØ muon Detector

- 3 layers
 - Drift tubes and scintillation counters
 - One layer (A) inside of 1.8 T toroid
- Good coverage:
 - Central |η| < 1 PDT</p>
 - Forward $1 < |\eta| < 2$ MDT
- Fast and efficient trigger

Upsilon production

- Quarkonium production is window on boundary region between perturbative and non-perturbative QCD
- Factorized QCD calculations to O(α³) (currently employed by PYTHIA)
- color-singlet, color-evaporation, color-octet models
- Recent calculations by Berger et al. combining separate perturbative approaches for low and high-p_t regions
 - Predict shape of p_t distribution
 - Absolute cross section not predicted
 - Y(1S) production at the Tevatron:
 - 50% produced promptly
 - 50% from decay of higher mass states (e.g. χ_b →Υ(1S)γ)

Analysis Overview

Sample selection

- 159 ± 10 pb⁻¹ taken with dimuon trigger
- Opposite sign muons with hits in all three layers of the muon system, matched to a track in the central tracking system (with hit in SMT)
 - $p_t(\mu) > 3 \text{ GeV and } |\eta(\mu)| < 2.2$
- At least one isolated µ
- ~ 46k Υ(1S) events

Analysis

- (μ⁺μ⁻) mass resolution functions obtained from J/ψ and MC studies
- Fit (μ⁺μ⁻) mass spectra for different y and p_t bins, assuming 3 Υ states and background
- Get efficiencies and uncertainties

Fitting the Signal

- Signal: 3 states (Y(1S), Y(2S), Y(3S)), described by Gaussians with masses m_i, widths (resolution) σ_i, weights c_i, (i=1,2,3)
 - Masses $m_i = m_1 + \Delta m_{i1}(PDG)$, widths $\sigma_i = \sigma_1 \cdot (m_i/m_1)$, for i=2,3
 - free parameters in signal fit: m₁, σ₁, c₁, c₂, c₃
- Background: 3rd order polynomial

PDG: $m(\Upsilon(1S)) = 9.46 \text{ GeV}$

$$m(\Upsilon) = 9.423 \pm 0.008 \text{ GeV } m(\Upsilon) = 9.415 \pm 0.009 \text{ GeV}$$

$$m(\Upsilon) = 9.403 \pm 0.013 \text{ GeV}$$

$$0.6 < |y^{\Upsilon}| < 1.2$$

$$1.2 < |y^{\Upsilon}| < 1.8$$

All plots: $3 \text{ GeV} < p_t(\Upsilon) < 4 \text{ GeV}$

Efficiencies, correction factors...

Cross section

```
N(\Upsilon)
d^2\sigma(\Upsilon(1S))
 dp_{t} \times dy = L \times \Delta p_{t} \times \Delta y \times \epsilon_{acc} \times \epsilon_{trig} \times k_{dimu} \times k_{trk} \times k_{qual}
                                      k<sub>dimu</sub> local muon reconstruction
    luminosity
                                       k<sub>trk</sub> tracking
  rapidity
                                      k<sub>qual</sub> track quality cuts
ε<sub>acc</sub> accept.•rec.eff.
     trigger
ε<sub>trig</sub>
         0.0 < y < 0.6 0.6 < y < 1.2 1.2 < y < 1.8
           0.15 - 0.26 0.19 - 0.28 0.20 - 0.27
                0.70
                         0.73
                                                          0.82
    Etrig
             0.85
                                   88.0
    kdimu
                                                          0.95
              0.99
                                   0.99
                                                          0.95
    k<sub>trk</sub>
              0.85
                                   0.85
                                                          0.93
```

Results: $d\sigma(\Upsilon(1S))/dy \times B(\Upsilon(1S) \rightarrow \mu^+\mu^-)$

$$0.0 < y_{\gamma} < 0.6$$
 $732 \pm 19 \text{ (stat)} \pm 73 \text{ (syst)} \pm 48 \text{ (lum)} \text{ pb}$ $0.6 < y_{\gamma} < 1.2$ $762 \pm 20 \text{ (stat)} \pm 76 \text{ (syst)} \pm 50 \text{ (lum)} \text{ pb}$ $1.2 < y_{\gamma} < 1.8$ $600 \pm 19 \text{ (stat)} \pm 56 \text{ (syst)} \pm 39 \text{ (lum)} \text{ pb}$ $0.0 < y_{\gamma} < 1.8$ $695 \pm 14 \text{ (stat)} \pm 68 \text{ (syst)} \pm 45 \text{ (lum)} \text{ pb}$

CDF Run I:

$$0.0 < y_{\Upsilon} < 0.4$$
 $680 \pm 15 \text{ (stat)} \pm 18 \text{ (syst)} \pm 26 \text{ (lum) pb}$

for central y bin, expect factor ~ 1.11 increase in cross section from 1.8 TeV to 1.96 TeV (PYTHIA)

Normalized Differential Cross Section

- shape of the p_t
 distribution does not
 vary much with Y
 rapidity
- Reasonable agreement with calculation of Berger, Qiu, Wang

µ-tagged jet cross section

Data sample:

- 294 ± 18 pb⁻¹
- Standard jet triggers
- Standard (y,ϕ) (R = 0.5) cone jets in $|y_{jet}| < 0.5$
 - ◆ Standard jet quality cuts, standard jet energy scale correction
- Jet tagged with medium quality muon: ΔR(μ, jet) < 0.5
- Additional quality cuts to reduce fake muons from punch-through
- 4660 µ-tagged jets

Analysis:

- Establish jet energy scale correction for μ-tagged jets
- Determine resolution for μ-tagged jets
- "Unsmear" resolution
- Determine efficiencies
- Extract heavy flavor component

Efficiencies....

$$N = \varepsilon_T \varepsilon_{PV} \varepsilon_j \varepsilon_\mu (f_{HF \to \mu} \sigma_{HF} + f_{bg \to \mu} \sigma_{bg}) L \Delta p_t$$

efficiency	detail	value
$arepsilon_T$	Trigger Eff	1.000
$arepsilon_{PV}$	Primary Vertex: z < 50cm, ≥ 5tracks	0.84 ± 0.005
$arepsilon_{\mu}$	μ Eff (geom, μ det., tracking, match)	0.37 ± 0.05
$arepsilon_{j}$	Jet Eff (jet quality cuts)	0.99 ± 0.01
$f_{bg o\mu}$	Frac background → μ (P _t > 4 GeV)	p _t dependent
$f_{HF o\mu}$	Frac heavy flavor $\rightarrow \mu$ (P _t > 4 GeV)	p _t dependent

Overall efficiency = 0.31 ± 0.05

Jet energy scale for µ-tagged jets

 P_t imbalance in events with 2 jets (one with, one without μ)

$$2\frac{P_t(\mathbf{w}.\boldsymbol{\mu}) - P_t(\mathbf{no}\,\boldsymbol{\mu})}{P_t(\mathbf{w}.\boldsymbol{\mu}) + P_t(\mathbf{no}\,\boldsymbol{\mu})}$$

- find 3.8% offset,
 not strongly p_t dependent
 for p_t in (75, 250 GeV)
- Scale energies of µ-tagged jets
- Order-randomized imbalance used to get resolution

p₄ of iet

Resolution

- Neutrinos in μ-tagged jet ⇒
 resolution worse than for jets
 without μ
- Take rms of order-randomized imbalance
- Parameterize, Fit (fig. (a))
- Subtract (in quadrature)
 resolution for jets without μ ⇒
 obtain resolution for μ-tagged jets
 (fig. (b))

• Fit:
$$\left(\frac{\sigma}{P_t}\right)^2 = \left(\frac{N}{P_t}\right)^2 + \left(\frac{S}{\sqrt{P_t}}\right)^2 + C^2$$

- $N = 7.7 \pm 4.1$
- $S = 1.9 \pm 0.1$
- $C = 0.0 \pm 0.1$
- Resolution parameterization used in "unsmearing"

Unsmearing correction

- Fit data to convolution of "ansatz function" with resolution
- Obtain unsmearing correction factors for p_t bins (ratio of unsmeared to smeared ansatz)
 - 0.65 to 0.77,
 smooth variation with p_t
- Used two different ansatz functions
 - estimate of systematic error:
 <5% for p_t > 100 GeV

HF fraction of μ-tagged jet sample

- Sample of jets with μ-tagged jets contains jets with μ from non-HF sources (e.g. π, K decays...)
- Use PYTHIA with standard
 DØ detector simulation to find
 HF fraction of jets tagged with
 muons vs (true) p_t

- Fit with O + N e^{-Pt/k}
 - $O = 0.44 \pm 0.06$
 - $N = 0.42 \pm 0.12$
 - $k = 114 \pm 68$

Data vs theory

- Use PYTHIA (with standard DØ MC) to find µ-tag fraction of jets and HF fraction of jets tagged with muons.
- NLO: NLOJET++ (with CTEQ6M) multiplied by PYTHIA µ-tagged HF fraction

- Uncertainties:
 - Multiplicative factors
 - "JES": jet energy scale
 - "NO HF": HF fraction uncertainty set to 0

Summary

- Υ(1S) cross-section
 - Presented measurement of $\Upsilon(1S)$ cross section BR($\rightarrow \mu\mu$) for 3 different rapidity bins out to $y(\Upsilon) = 1.8$, as a function of $p_t(\Upsilon)$
 - First measurement of $\Upsilon(1S)$ cross section at $\sqrt{s} = 1.96$ TeV.
 - Cross section values and shapes of dσ/dp_t show only weak dependence on rapidity.
 - dσ/dp, is in good agreement with published results (CDF at 1.8 TeV)
 - Normalized dσ/dp_t in good agreement with recent QCD calculations (Berger at al.)
- µ-tagged jet cross section:
 - Measured dσ/dp_t in central rapidity region |y|<0.5 for μ-tagged jets originating from heavy flavor (estimating HF contribution by MC)
 - Resulting HF-jet cross section values lie between PYTHIA and simple NLO calculation
 - Future:
 - Reduce systematic uncertainties
 - ◆ Find data driven method of estimating HF fraction (p_t^{rel},imp. par...?)
 - ◆ Try other jet-tagging methods (sec. vertex, impact par., ..)