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The massless QCD calculations of the DIS cross sections based

on the Mellin-space technique has certain advantages:

• Straightforward use of the higher-order calculations, which

are commonly derived in terms of the Mellin moments

• Integro-differential evolution equations are reduced to the

ordinary differential equations, which can be solved very

fast numerically or even analytically in some cases

• The convolution of the PDFs with the coefficient functions

are reduced to the algebraic product of the corresponding

functions in the Mellin space



Account of the heavy-quarks contribution to the DIS cross

section within the Mellin-technique is hampered as compared to

the massless case due to the threshold behavior of the

coefficient functions, which does not allow to derive analytical

expressions in the Mellin space.

(Witten 76)

(Laenen-Riemersma-Smith-van Neerven 93)

The aim of this study is to develop an efficient tool allowing to

expand the Mellin technique for the calculation of the massive

quark production too.



The heavy-quark contribution to the DIS structure functions is

Hk(x, Q2, m2) =
Q2

πm2
e2
Q
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s

4m2
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with the O(αs) contributions to the coefficient function

cg,Hk
(η, ξ) calculated analytically or given by the ξ − η grids.

As a first step the coefficient functions are approximated by the

polynomials of z in the range [0, zmax] using the MINIMAX

procedure, which minimizes maximal deviation of the

polynomial from the approximated function. This technique

was successfully used before for analytic continuation of the

Mellin transforms for the harmonic sums.

(Blümlein-Kurth 99-03)
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For the 15-th order polynomials

the MINIMAX precision approx-

imation for the O(αs) contribu-

tion to cFL
is better than 10−4

in the whole realistic kinematical

range.



C2,G-O(αs
2)
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Some coefficient functions rising

at large x were multiplied by ad-

ditional factor of (z − zmax)
k in

order to improve precision. For

the O(α2
s ) gluonic contribution

to cF2 the best value of k = 0.4.



max. absolute errors of the MINIMAX-polynomials

Wilson Coeff. κ ξ = 1 ξ = 10 ξ = 102 ξ = 103 ξ = 104

c
(0)
FL,g

0. 2.1E-5 4.5E-5 2.5E-5 5.7E-6 2.9E-7

c
(0)
F2,g

0.5 1.4E-1 8.3E-3 3.0E-3 1.0E-3 3.8E-4

c
(0)
g1,g 0. 1.1E-3 6.7E-4 2.4E-4 8.3E-5 3.0E-5

c
(1)
FL,g

0. 4.1E-5 5.0E-5 1.4E-5 8.9E-6 6.9E-7

c
(1)
FL,g

0. 2.3E-5 5.0E-5 1.2E-6 1.8E-6 1.5E-7

c
(1)
FL,q

0. 1.4E-5 2.2E-5 4.3E-6 3.3E-7 4.4E-7

c
(1)
FL,q

0. 6.0E-7 2.1E-6 3.7E-7 3.7E-8 3.1E-8

d
(1)
FL,q

0. 4.0E-6 2.6E-6 6.1E-7 1.5E-6 6.3E-7

c
(1)
F2,g

0.4 5.6E-2 2.6E-2 3.9E-3 1.0E-3 8.5E-4

c
(1)
F2,g

0. 8.9E-4 5.3E-3 1.9E-3 6.6E-4 2.3E-4

c
(1)
F2,q

-0.5 2.6E-3 1.2E-3 2.2E-4 2.2E-5 6.3E-6

c
(1)
FL,q

0. 3.2E-4 1.3E-4 2.2E-5 1.8E-6 7.1E-7

d
(1)
F2,q

0. 1.3E-4 5.1E-5 8.1E-6 1.0E-4 5.8E-4

The above accuracies suffice for all practical applications.



With the Mellin transform of the coefficient functions given as

the polynomial of N the x-space heavy-quark structure

functions are calculated using the contour integral of the

product of the Mellin-space coefficient functions and analytical

continuation of the PDFs moments in the complex-moments

plane:

Fi(x) =
1

π

∫

∞

0

dzIm

[

eiΦx−c(z)F (c(z))
]

, c(z) = c0+zeiΦ, Φ ' (3/4)π .

Typical precision of the total procedure including the

MINIMAX approximation of the coefficient functions and the

contour integration is better than 10−4 for the realistic

kinematics that is well below the accuracy of the available and

foreseen heavy quark production data.



Examples of worst recovery precision

(O(α2
s ) gluonic contribution to F2)
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Examples of worst recovery precision (cont’d)

(O(αs) contribution to g1)
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Summary

The MINIMAX procedure provides efficient tool for the

semi-analytical derivation of the Mellin-space coefficient

functions in the DIS heavy-quark production. With the 15-th

order polynomial one can obtain the precision of recovery of the

O(αs) and O(α2
s ) contributions to the structure functions better

that 10−4 with the speed performance relevant for many

practical applications.


