Measurements of Charm and Charmonium Production by PHENIX

Ken Read ORNL / University of Tennessee On behalf of the PHENIX Collaboration

Measuring Charm and Charmonium Production

- p+p collisions
 - Test pQCD predictions at \sqrt{s} = 200 GeV
 - Establish a baseline for total charm production for the heavy ion program
- Au+Au collisions
 - Measure medium modification effects (charm energy loss, collective flow)
 - Study potential thermal production of charm from QGP
 - Establish open charm baseline for J/ψ production

PHENIX Experiment

- Electron measurements.
 - |η|<0.35
 - Two separate arms $2x\Delta\phi = 90^{\circ}$
 - δp/p ~ 1% p
 - RICH (γ_{thr} =35)
 - e/π separation up to
 p_T ~ 4.8 GeV/c
- Muon measurements
 - $-1.2 < |\eta| < 2.4$
 - Two separate arms at forward and backward rapidity

J/ψ Production

p+p collisions at $\sqrt{s} = 200 \text{ GeV}$

J/ψ Production

PHENIX p+p and d+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

J/ψ Production

PHENIX Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Cu+Cu Collisions 2005

Automatically generated near-online near-physics plots. "Raw plots" not yet corrected for acceptance or efficiency.

Results from 2004 high statistics Au+Au run in preparation.

Extracting Heavy Flavor Production

PHENIX p+p collisions at $\sqrt{s} = 200 \text{ GeV}$

Heavy Flavor Production (electrons)

Spectrum is harder than PYTHIA prediction for leading order only (shown) without full hard scattering turned on.

Heavy Flavor Production (muons)

PHENIX p+p collisions at $\sqrt{s} = 200 \text{ GeV}$

Comparison of electron and muon results

PHENIX p+p collisions at $\sqrt{s} = 200 \text{ GeV}$

Electron production at $\eta = 0$ Muon production at $\eta = 1.65$

Heavy Flavor Production (electrons)

PHENIX Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

For more on high p_T suppression, see "Production of direct photons, pions, and eta in p+p and Au+Au collisions" presented by Terry Awes at 17:10 on Friday in the Hadronic Final States working group.

12

Heavy Flavor Production (electrons)

PHENIX Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Suppression at high p_T relative to scaled p+p results.

Spectral shape modified by medium.

Pattern consistent with models incorporating heavy quark energy loss.

v₂ for Heavy Flavor electrons

PHENIX Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

S.S. Adler, *et al.*, nucl-ex/0502009 Theoretical predictions from Greco, Ko, Rapp in Phys. Lett. B595 (2004) 202

Improved measurement with higher statistics in preparation.

Initial state spatial anisotropy lead to final state momentum anisotropy

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{3}N}{p_{T}d\varphi dp_{T}dy} \sum_{n=0}^{\infty} 2v_{n} \cos\left(n\left(\varphi - \Psi_{R}\right)\right)$$
$$v_{2} = \left\langle \cos 2\left(\varphi - \Psi_{R}\right) \right\rangle$$

Summary

- Heavy flavor production has been measured via semileptonic decays in p+p, d+Au, and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC
- Strong modification of the electron spectra in Au+Au collisions
- Initial measurement of heavy flavor electron v₂
- Results with higher statistics and other colliding species still to come!
- For further information, see www.phenix.bnl.gov.