Heavy Quark Production and PDF's

Fred Olness

SMU

Collaborators: P. Nadolsky, S. Berge, W. Tung, S. Kretzer, J. Owens, S. Kuhlmann, J. Pumplin, H. Lai

> DIS 2005 29 April 2004

Heavy Quark Production: The Problem --- a new scale

cf., talk by Lance Dixon

m = 0: Massless case.

Mass plays no dynamic role Well understood. $m = \infty$: Infinite case.

Mass Decouples. We can forget about this object

MS-Bar Massless

How do we deal with multiple scales???

Heavy Quark introduces new scale:

... life gets interesting.

... i.e., as in the ACOT renormalization scheme

DGLAP equation **Resums iterative splittings** inside the proton

We can describe the full kinematic range from low to high implemented in the CTEQ6HQ PDF's with finite M_{o}

PDF's

CTEQ6HQ PDF's:

Compare: CTEQ6M, CTEQ6HQ, CTEQ5M

• Small difference of C5M to C6M

Up and Down quarks are well determined

• Some difference between C6M and C6HQ at low x

Shift due to both scheme and uncertainty

S. Kretzer, H.L. Lai, F. I. Olness and W.K. Tung. Phys.Rev.D69:114005,2004

CTEQ6HQ PDF's:

Compare: CTEQ6M, CTEQ6HQ, CTEQ5M

- Shift of Gluon for C5M to C6M is large (New DIS & Jet data)
- Charm PDF tied to gluon $(g \rightarrow cc)$
- Small visual difference between C6M and C6H

Shift due to both scheme and uncertainty

S. Kretzer, H.L. Lai, F. I. Olness and W.K. Tung. Phys.Rev.D69:114005,2004

Does it make a difference???

Data set	# pts	CTEQ6HQ	CTEQ6M	C6M@GM	C6HQ@ZM	
Bcdms.p	339	370 (1.09)	370 (1.09)	370 (1.11)	373 (1.10)	
Bcdms.d	251	269 (1.07)	279 (1.11)	274 (1.07)	281 (1.12)	
Zeus	104	94 (0.91)	102 (0.98)	258 (2.84)	387 (3.72)	
Hla	126	124(0.99)	130 (1.03)	135 (1.11)	123 (0.98)	HERA experiments
Н1Ь	129	103 (0.80)	111 (0.86)	119 (0.84)	104 (0.80)	Mixed scheme
Hlc	229	266 (1.16)	261 (1.14)	474 (2.11)	364 (1.59)	
Nmc_p	201	304 (1.51)	299 (1.49)	273 (1.35)	366 (1.82)	
Nmc.d/p	123	112 (0.91)	111 (0.91)	111 (0.90)	114 (0.92)	
Ccff F2	69	90 (1.30)	120 (1.74)	116 (1.82)	107 (1.55)	
Ceff F3	86	35 (0.41)	37 (0.43)	36 (0.40)	36 (0.42)	
E605	119	102 (0.86)	103 (0.86)	101 (0.86)	102 (0.86)	
Cdf_wasy	11	9 (0.78)	9 (0.83)	9 (0.83)	9 (0.78)	Encouraging that C6M and
E866	15	5 (0.34)	6 (0.43)	6 (0.43)	5 (0.34)	C6HQ are comparable
D0_jet	90	71 (0.79)	49 (0.55)	49 (0.55)	71 (0.79)	
Cdf_jet	33	55 (1.66)	50 (1.51)	50 (1.51)	55 (1.66)	
All	1925	2008 (1.04)	2037 (1.06)	2431 (1.26)	2 496 (1.30)	Encouraging that Mixed
Q	() ()		(2	2	schemes yield large X^2
8 4 6	C	611-	671			
	A CON			\mathcal{F}	fr.	
	C'Y	ĊŸ	LV.	, A	7	

How does it do for the F_2^{C} data???

Generalized heavy degrees of freedom

SUSY PDF's

Generalized heavy DOF: new thresholds for the PDFs

Inclusion of new strongly interacting particles (*e.g.*, *gluino*) affect PDF's at higher scales.

Bulk of PDF constraints are at low Q scales

Strong correlation between α_s gluino (and gluon)

Will affect gluon production of Higgs

Strong Coupling Constant

New thresholds can significantly alter PDF's at large Q

E. L. Berger, P. M. Nadolsky, F. I. Olness and J. Pumplin. Phys.Rev.D71:014007,2005

Differential Distributions 0r Soft Gluon Resummation for Massive Quarks

Differential Heavy Quark Production

e.g., even more scales

Next:

Even a new scale q_T :

... life gets more interesting.

Solution: Resum $Log(q_T)$ via the CSS Sudakov form factor

Collins, Soper, Sterman NP B250, 199 (1985)

Take a closer look at the Sudakov term

Sudakov Resummation of Soft Gluon Radiation

singular distributions are smeared to physical distributions

$$S(b, Q, M_H) = \int \frac{d\mu^2}{\mu^2} \left\{ A(\alpha_s, M_H) \ln\left(\frac{Q^2}{\mu^2}\right) + B(\alpha_s, M_H) \right\} + S_{Non-Pert}$$

For update on VFNS developments, see Robert Thorne's talk

B-Production: Sudakov Resummation of Soft Gluon Radiation

Nadolsky, Kidonakis, Olness, Yuan: PRD67:074015, 2003

Quark PDF

What is relative uncertainty on PDFs' ???

CTEQ6: Pumplin, Stump, Huston, Lai, Nadolsky, Tung, JHEP 0207, 012 (2002)

What is true uncertainty on s-quark PDF???

Warning: The Director General has determined the band of PDF's can greatly underestimate the true uncertainty

di-muon	NuTeV	CCFR	Combined
Neutrino	5012	5030	10042
Anti-Nu	1458	1060	2518

* High stats & high precision data* Best constraints on strange quark

M. Goncharov et al., NuTeV Collaboration PRD 64:110226 (2001) NuTeV Collaboration (D. Mason for the collaboration). Moriond 2004, hep-ex/0405037 Global Fit: vary s(x) distribution

χ² / DOF	CTEQ6M	Constrained	Mixed	Free
CCFR Nu	1.02	0.85	0.79	0.72
CCFR Nu-bar	0.58	0.54	0.59	0.59
NuTeV Nu	1.81	1.70	1.55	1.44
NuTeV Nu-bar	1.48	1.30	1.15	1.13
BCDMS F2p	1.11	1.11	1.11	1.11
BCDMS F2d	1.10	1.10	1.10	1.11
H1 96/97	0.94	0.95	0.94	0.94
H1 98/99	1.02	1.03	1.03	1.03
ZEUS 96/97	1.14	1.14	1.14	1.15
NMC F2p	1.52	1.50	1.51	1.49
NMC F2d/F2p	0.91	0.91	0.91	0.91
NMC F2d/F2p <q<sup>2></q<sup>	1.05	1.07	1.06	1.03
CCFR F2	1.70	1.71	1.81	1.88
CCFR F3	0.42	0.42	0.44	0.42
E605	0.82	0.82	0.82	0.83
NA51	0.62	0.61	0.52	0.52
$CDF\ \ell\ Asym$	0.82	0.83	0.82	0.82
E866	0.39	0.40	0.39	0.38
D0 Jets	0.71	0.65	0.70	0.67
CDF Jets	1.48	1.48	1.48	1.47
TOTAL	2173	2144	2142	2133

Total of 1991 data points

CTEQ6: J. Pumplin, et al., JHEP 0207:012,2002

Reasonable χ^2 values (CTEQ6 did not fit di-muon data)

More parameters, lower value of χ^2

Only di-muon data is sensitive to s(x) !!!

Idea: and -bar data separately determine s and s-bar distributions

What does the $\Delta s(x)$ strange PDF look like?

General range of the asymmetry

$$[\mathbf{S}^{-}] \equiv \int_{0}^{1} \mathbf{x} \{ \mathbf{s}(\mathbf{x}) - \overline{\mathbf{s}}(\mathbf{x}) \}$$

 $+0.40 \ge 100 \times [S^{-}] \ge -0.10$

 $\Delta s(\mathbf{x})$: large uncertainty affected by:

- charm fragmentation
- charm mass
- PDF set

ongoing analysis, both LO and NLO

Olness, Pumplin, Stump, Huston, Nadolsky, Lai, Kretzer, Owens, Tung, Eur.Phys.J.C40:145-156,2005 Kretzer, Olness, Pumplin, Stump, Tung, Reno, PRL 93,041802 (2004)

See Dave Mason's talk

Conclusions

* CTEQ6HQ Distributions

Fully massive implementation While "visually" small, consistent schemes are important

* SUSY PDF's:

Generalized heavy degrees of freedom; new thresholds

* q_T Resummation for Heavy Quarks Address $Log(q_T)$ and Log(M)Quark Mass M regulates singularity at $q_T \rightarrow 0$

* Strange Quark PDF

This is real progress!!! We now can discriminate! Large uncertanties; must fully characterize effects; include NLO Analysis in progress

Thanks to: P. Nadolsky, S. Berge, W. Tung, S. Kretzer, J. Owens, S. Kuhlmann, J. Pumplin, H. Lai, T.Bolton, P. Spentzouris, D. Mason, M. Shaevitz, K. McFarland, U.K. Yang, A. Barzarko

Χ

What is the range of the s-s Asymmetry?

1.00 (2349)

1.00

1.00

Inclusive II

2097

1.00

1.00

CDF W-asym

Heavy Quark Production: Formal Developments

Result:

1) Comparable Numerics & 2) Simpler Calculations

See Robert Thorne's talk

Sign-selected beam separates and : Extract s and s

* Other data sets are insensitive to s(x)

* Caution: ensure quark number sum rule is satisfied

$$\int dx [s(x) - \overline{s}(x)] = 0$$

Electroweak Mixing Angle Measurement

Paschos-Wolfenstein Relation:

$$R^{-} \equiv \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X) - \sigma(\overline{\nu}_{\mu}N \to \overline{\nu}_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X) - \sigma(\overline{\nu}_{\mu}N \to \mu^{+}X)}$$
$$\approx \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

NuTeV Result: $\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0031(stat) \pm 0.0009(syst)$

Standard Model Fit:

$$\sin^2 \theta_W^{(on-shell)} = 0.2227 \pm 0.0004$$
 LEP EWWG

G.P. Zeller, (NuTeV) et al., PRL 88: 091802 (2002); PRD 65: 111103 (2002)

Contributions to Experimental Uncertainty

SOURCE OF UNCERTAINTY	dian ² A _{rr}	8 <i>1</i> ,°	δ R ^y	
Data Statistics	0.00135	0.00069	0.00159	
Mome Carlo Statistics	0.00010	0.00006	0.00010	
TOTAL STATISTICS	0.00135	0.00069	0.00159	Largest model uncertain
ע _{הן} ע _ה דומג פוסג אין איז	0.000 39	0.00025	0.00044	Largest moder ancortam
Energy Measurement	0.00018	0.00015	0.00034	arises from
Shower Length Model	0.00027	0.00071	0.00020	charm production
Counter Efficiency, Noise, Size	0.00023	41000.0	0.00006	
Interaction Venex	0.000 30	0.00022	0.00017	and $S(X)$
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057	
Charm Production, Strange Sea	0.00047	0.00089	0.00184	
Charm Sea	0.000.10	0.00005	0.00004	
a ^y ja ^y	0.00022	0.00007	0.00076	a and a bar difference ou
Radiative Corrections	0.00011	0.00005	0.00006	s and s-bai unterence car
Non-Isoscalar Target	0.00005	0.00004	0.00004	have large effect
Higher Twisz	0.000.14	0.00012	0.00013	
R_b	0.00032	0.00045	0.00101	
TOTAL MODEL	0.00064	10100.0	0.00212	
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272	l
			- 2 4 - 0	relative uncertainty is

reduced for combination

TABLE 1. Uncertainties for both the single parameter $\sin^2 \theta w$ fit and for the comparison of \mathcal{R}^{ω} and $\mathcal{R}^{\overline{\omega}}$ with model predictions.

G.P. Zeller, (NuTeV) et al., PRL 88: 091802 (2002); PRD 65: 111103 (2002)

Future Work: Resummation of soft gluons for massive processes

* Uses CSS Formalism to resum Log(q_T/Q)
* Uses ACOT Formalism to resum Log(M/Q)

Satisfies appropriate limits:

 $q_T \rightarrow Q$, obtain usual perturbative result M \rightarrow 0, obtain usual massless result M, $q_T \rightarrow$ 0, obtain usual Sudakov form

Theoretical basis for NLO Monte Carlo program ... provides full kinematic description

What is the status:

- Tremendous new information on s+s
- s-s: large uncertainty affected by:
 - charm fragmentation
 - charm mass
 - PDF set

Strong interplay -0.002
 between the existing experimental constraints and the global theoretical -0.006
 constraints, particularly the # sum rule

•Work is ongoing

Precision PDF's are Essential

CDF Collaboration PRL 77, 438 (1996)

Precision PDF's are essential

H1 Collaboration, ZPC74, 191 (1997) ZEUS Collaboration, ZPC74, 207 (1997) **Strange Asymmetry**

Global analysis: Barone, Pascaud, Zommer

DIS: BEBC, CDHS, CDHSW, BCDMS, H1, NMC

Barone, Pascaud, Zommer, Eur. Phys. J. C12: 243, 2000