Charmonium production at NLO in two-photon collisions

Bernd Kniehl University of Hamburg kniehl@desy.de

DIS 2005, Madison, Wisconsin, April 27 - May 1

Contents

- 1. Introduction
- 2. LO results
- 3. NLO calculation
 - (a) Virtual corrections
 - (b) Real corrections
- 4. Phenomenology
 - (a) $\gamma \gamma \rightarrow J/\psi + j + X^1$ (b) $\gamma \gamma \rightarrow J/\psi + \gamma + X^2$
- 5. Summary and outlook

¹M. Klasen, B.A.K., L.N. Mihaila, M. Steinhauser, Nucl. Phys. **B713** (2005) 487.

²M. Klasen, B.A.K., L.N. Mihaila, M. Steinhauser, Phys. Rev. **D71** (2005) 014016.

1. Introduction

• useful testing ground for QCD

Heavy quarkonium H:

• simplest laboratory to study the binding of quarks to hadrons

Color Singlet Model: E.L. Berger, D. Jones, Phys. Rev. D23 (1981) 1521; R. Baier, R. Rückl, Phys. Lett. 102B (1981) 364.

- Factorization in perturbative short-distance part $[\alpha_s(m_Q), m_Q]$ and nonperturbative long-distance part $[R_S(0), R'_P(0)]$.
- $Q\overline{Q}$ pair must be in CS state and have same ${}^{2S+1}L_J$ quantum numbers as H.
- No general argument for validity in higher orders; logarithmic IR divergences in *P*-wave decays to light hadrons and relativistic corrections to *S*-wave annihilation.
- Explains direct J/ψ photoproduction at HERA in NLO, but falls far short of Tevatron $p\overline{p}$, LEP2 $\gamma\gamma$, and HERA ep DIS data.

Color Evaporation Model: H. Fritzsch, Phys. Lett. **B67** (1977) 217; F. Halzen, Phys. Lett. **B69** (1977) 105; M. Glück, J.F. Owens, E. Reya, Phys. Rev. **D17** (1978) 2324.

Hard comover scattering: P. Hoyer, S. Peigné, Phys. Rev. **D59** (1999) 034011; N. Marchal, S. Peigné, P. Hoyer, Phys. Rev. **D62** (2000) 114001.

B.A. Kniehl: Charmonium production at NLO in two-photon collisions

NRQCD factorization formalism

W. E. Caswell, G. P. Lepage, Phys. Lett. **B167** (1986) 437; G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. **D51** (1995) 1125; D55 (1997) 5853 (E).

• Rigorous theoretical framework, renormalizable, predictive.

• Factorization in perturbative short-distance coefficients and long-distance matrix elements:

$$d\sigma(a+b \to H+d) = \sum_{n} \left\langle \mathcal{O}^{H}[n] \right\rangle d\sigma(a+b \to Q\overline{Q}[n]+d),$$

where $n = {}^{2S+1}L_J^{(c)}$.

• Relative importance of $\langle \mathcal{O}^H[n] \rangle$ governed by velocity scaling rules. \rightsquigarrow Double expansion in $\alpha_s(m_H)$ and $v \approx \alpha_s(m_H)$. $v^2 \approx 0.3 (0.1)$ for J/ψ (Υ).

- CSM recovered for $v \to 0$.
- Predicts CO processes, to be identified in other kinds of experiments.

Motivation for NLO:

- Reduction of renormalization and factorization scale dependence.
- Sizeable effects, e.g. due to opening of new partonic production channels.
- Ultimate test of NRQCD factorization by global NLO fit.
- High-statistics data from HERA II, Tevatron Run II, LHC, ILC.

Previous NLO calculations:

- $\gamma p \rightarrow J/\psi + X \text{ w/direct } \gamma \text{ and } J/\psi \text{ for } p_T > 0 \text{ in CSM M. Krämer, J. Zunft, J. Steegborn,}$ P.M. Zerwas, Phys. Lett. **B348** (1995) 657; M. Krämer, Nucl. Phys. **B459** (1996) 3.
- $\gamma p \rightarrow J/\psi + X$ w/ direct γ and J/ψ for $p_T = 0$ in NRQCD F. Maltoni, M.L. Mangano, A. Petrelli, Nucl. Phys. **B519** (1998) 361.

• $p\bar{p} \rightarrow J/\psi + X$ for $p_T = 0$ in NRQCD A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, M.L. Mangano, Nucl. Phys. **B514** (1998) 245.

Here:

- $\gamma\gamma \rightarrow J/\psi + X$ w/ direct γ 's and prompt J/ψ for $p_T > 0$ in NRQCD
- X purely hadronic: compensate μ_R dependence of LO single-resolved contribution
- $X \le \gamma$: direct photoproduction dominant

2. LO results

M. Klasen, B.A.K., L.N. Mihaila, M. Steinhauser, Phys. Rev. Lett. **89** (2002) 032001; R.M. Godbole, D. Indumathi, M. Krämer, Phys. Rev. **D65** (2002) 074003.

Subprocess: $\gamma + \gamma \rightarrow c\overline{c} \left[{}^{3}S_{1}^{(8)} \right] + g$

Subprocess: $\gamma + \gamma \rightarrow c\overline{c} \left[{}^{3}S_{1}^{(1)} \right] + \gamma$

B.A. Kniehl: Charmonium production at NLO in two-photon collisions

3. NLO calculation: (a) Virtual corrections

diagram	UV	IR	Coulomb
self energy	X		
triangle	X	×	
box		×	
pentagon		×	×

divergence	regularization	removal			
UV	dim. reg. $(1/\epsilon_{ m UV})$	renormalization of $g_s, m_Q, \psi_Q, G_\mu (\rightsquigarrow \mu)$			
		and $\langle \mathcal{O}^{H}[n] \rangle (\rightsquigarrow \lambda)$			
IR	dim. reg. $(1/\epsilon_{ m IR})$	real corrections			
Coulomb	1/v	$\left< \mathcal{O}^{H}[n] \right>$			
Operator renromalization					
$\left\langle \mathcal{O}^{H} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle_{1} = \left\langle \mathcal{O}^{H} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle_{0} \left[1 + \left(C_{F} - \frac{C_{A}}{2} \right) \frac{\pi \alpha_{s}}{2v} \right] + \frac{4\alpha_{s}}{3\pi m^{2}} \left(\frac{4\pi \mu^{2}}{\lambda^{2}} \right)^{\epsilon}$					
$\times \exp(-\epsilon \gamma_E) \left(\frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \right) \sum_{J=0}^2 \left(C_F \left\langle \mathcal{O}^H \left[{}^3\!P_J^{(1)} \right] \right\rangle + B_F \left\langle \mathcal{O}^H \left[{}^3\!P_J^{(8)} \right] \right\rangle \right)$					

(b) Real corrections

Subprocesses:

Soft and/or collinear singularities:

- Introduce IS and FS phase-space slicing parameters δ_i, δ_f .
- Integrate over soft and/or collinear regions analytically in d dimensions.
- Factorize IS collinear singularities into γ PDFs of single-resolved process ($\rightsquigarrow M$).
- Integrate over hard region numerically in 4 dimensions.

Process	IS coll. (δ_i)	FS coll. (δ_f)	soft (δ_f)
$\gamma\gamma ightarrow c\overline{c}\left[{}^{3}\!P_{J}^{(1)},{}^{3}\!P_{J}^{(8)} ight]gg$			×
$\gamma\gamma ightarrow c\overline{c}\left[{}^{1}\!S^{(8)}_{0} ight]gg$			
$\gamma\gamma ightarrow c\overline{c}\left[{}^3\!S_1^{(8)} ight]gg$		×	×
$\gamma\gamma ightarrow c\overline{c} \left[{}^3\!S_1^{(8)} ight] q ar{q}$	×	×	
$\gamma\gamma ightarrow c\overline{c} \left[{}^{1}\!S_{0}^{(8)} , {}^{3}\!P_{J}^{(8)} ight] q\overline{q}$	×		

Assembly of $\gamma\gamma \rightarrow H + X$ cross section:

$$d\sigma(\mu,\lambda,M) = d\sigma_{0}(\mu,\lambda)[1 + \delta_{\rm vi}(\mu;\epsilon_{\rm UV},\epsilon_{\rm IR},v) + \delta_{\rm ct}(\mu;\epsilon_{\rm UV},\epsilon_{\rm IR}) + \delta_{\rm op}(\mu,\lambda;\epsilon_{\rm IR},v) \\ + \delta_{\rm fs}(\mu;\epsilon_{\rm IR},\delta_{f})] + d\sigma_{\rm is}(\mu,\lambda,M;\delta_{i}) + d\sigma_{\rm so}(\mu,\lambda;\epsilon_{\rm IR},\delta_{f}) + d\sigma_{\rm ha}(\mu,\lambda;\delta_{i},\delta_{f})$$

B.A. Kniehl: Charmonium production at NLO in two-photon collisions

4. Phenomenology

Input:

- e^+e^- linear collider with $\sqrt{S}=500~{\rm GeV}$
- IS bremsstrahlung with $\theta_{\rm max} = 25~{\rm mrad}$
- Beamstrahlung with $\Upsilon=0.053~({\rm TESLA})$
- J/ψ , χ_{cJ} , and ψ' MEs from E. Braaten, B.A.K., J. Lee, Phys. Rev. D62 (2000) 094005
- γ PDFs from M. Glück, E. Reya, I. Schienbein, Phys. Rev. D60 (1999) 054019
- \bullet FS prompt $\gamma:~p_T^{\gamma}>3$ GeV, $|y^{\gamma}|<2.79$

(a) $\gamma\gamma
ightarrow J/\psi + j + X$

δ_i, δ_f dependences

Heavy Flavors

μ, λ, M dependences

B.A. Kniehl: Charmonium production at NLO in two-photon collisions

(b) $\gamma\gamma
ightarrow J/\psi + \gamma + X$

μ,λ dependences

B.A. Kniehl: Charmonium production at NLO in two-photon collisions

5. Summary and outlook

- $\gamma \gamma \rightarrow J/\psi + j + X$ w/ direct γ 's and prompt J/ψ for $p_T > 0$ at NLO in NRQCD
 - Sizeable K factor due to opening of $g \to c\overline{c} \begin{bmatrix} {}^{3}S_{1}^{(8)} \end{bmatrix}$ fragmentation-prone subprocesses $\gamma \gamma \to c\overline{c} \begin{bmatrix} {}^{3}S_{1}^{(8)} \end{bmatrix} g$ and $\gamma \gamma \to c\overline{c} \begin{bmatrix} {}^{3}S_{1}^{(8)} \end{bmatrix} q\overline{q}$ (proportional to e_{q}^{2})
 - M dependence of LO cross section (dominantly single-resolved) considerably reduced
- $\gamma\gamma \rightarrow J/\psi + \gamma + X$ at NLO in NRQCD
 - Direct photproduction dominant
 - Unscreened μ dependence
 - No M dependence \leadsto formally independent of single-resolved photoproduction
 - Small K factor from virtual corrections
- Extend analysis to ep photoproduction and hadroproduction
- Test NRQCD factorization by global NLO fit to high-statistics data from HERA II, Tevatron Run II, LHC, ILC,. . .