Measurement of Beauty & Charm Photoproduction at H1 using Inclusive Lifetime Tagging

April, 29th 2005

Heavy Flavors Working Group

Photoproduction of Beauty & Charm at HERA

Relevant scales:

$$m_{c,b}: \sim 1.5 \ (4.75) \ \mathrm{GeV}$$

 $\begin{array}{rl} p_{T}^{c,b}: & \text{Event selection:} \\ & p_{t}^{jet_{1,2}} > 11,8\,\text{GeV} \end{array}$

 \rightarrow Heavy quarks: Multiscale problem in pQCD.

Theory models:

- \triangleright LO $\mathcal{O}(\alpha_s)$ + Parton shower
 - \rightarrow DGLAP evolution, incl. flavor excitation PYTHIA
 - \rightarrow CCFM evolution CASCADE
- \triangleright NLO \mathcal{O} (α_s^2) calculations
 - $\rightarrow~\mathrm{FMNR}$ (fixed order massive)

Motivation

\triangleright Heavy quark production in ep collisions at HERA:

- * Sensitivity to proton and photon structure.
- * Parton dynamics of the hard scattering.
- * Hard scale provided by the heavy quark masses (m_c, m_b) .
- * Factorisation and perturbative QCD (massive/massless).

▷ Aims of this analysis:

- * First inclusive measurement of **beauty** & **charm** Dijets at high p_t in photoproduction.
- * Inclusive lifetime tag
 - \rightarrow Large statistics
 - \rightarrow Large $p_t (p_t > 2 \cdot m_b)$.

Heavy Flavor Signal Extraction

Use of precise tracking information available from H1 vertex detector

Signed Impact Parameter:

- hdows MC used for simulation of b, c and uds
- ▷ Marked asymmetry for heavy quarks.
- ▷ Anti strangeness cut: $|DCA| < 1 \text{ mm} (\text{remove e.g. } K_S^0)$

Significance = $\frac{DCA_i}{\sigma(DCA_i)}$

Lifetime Observables I

Using significances of the two highest significance tracks, S_1 and S_2

 S_2 Significance of the 2^{nd} highest significance track for > 1 track events.

Negative Subtraction

Subtract negative bins in $S_1 \& S_2$ from the positive

- ▷ Reduces sensitivity to resolution description of light quarks.
- Subtracted spectrum dominated by charm. Increasing beauty fraction at higher significances.
- ▷ Contribution from light quarks negligible.
- Fit scale factors for beauty, charm and uds from negative subtracted spectra (+ total number of events).

Integrated Cross Section

$\triangleright \ \ \, {\rm Kinematic \ range:} \\ Q^2 < 1 \ \, {\rm GeV}^2, \ \, 0.15 < y < 0.8, \ \, p_t^{jet} > 11(8) \ \, {\rm GeV}, \ \, -0.88 < \eta^{jet} < 1.3 \\ \end{cases}$

Beauty: $\sigma(ep \rightarrow eb\bar{b}X \rightarrow ejjX) = 149 \pm 18 \pm 31 \, pb$ Charm: $\sigma(ep \rightarrow ec\bar{c}X \rightarrow ejjX) = 694 \pm 69 \pm 97 \, pb$

- ▷ Dominating systematic error.
- ▷ Main contributions come from the track resolutions and model uncertainties.

▷ Fractions:

Beauty (Charm) fraction typically $\sim 7\%$ ($\sim 35\%$).

Alternative lifetime tag

Jet Probability*:

- Use all selected tracks within the two leading jets.
- Construct a probability P_{MIP} (from the significances) that the jets are compatible with the primary vertex.
- Low (i.e. large negative logarithm) probabilities indicate secondary vertex.
- Fit fractions of beauty, charm and light quarks.

(*follows ALEPH paper Phys. Lett. B **313** (1993) 535)

Resulting cross sections are found to agree with the results obtained with S_1 and S_2 .

Beauty & Charm in Photoproduction $d\sigma/dp_t^{jet_1}(ep - > ecc(bb)X - > ejjX)$

H1 99/00 e^+ data: $Q^2 \sim 0, \ 0.15 < y < 0.8 \parallel p_t^{jet} > 11(8)$ GeV, $-0.88 < \eta^{jet} < 1.3$

LO + PS QCD Models: Good description of shape and norm.

20

▷ NLO QCD (FMNR): Fits within uncertainties.

- LO + PS QCD Models: Good description of shape.
- ▷ NLO QCD (FMNR): Slightly higher (at low p_t).

H1 Data (prel.)

NLO QCD ⊗ had

30

35

p_t^{jet} [GeV]

Pythia

Pythia res.

Cascade

 $Q^2 < 1 \text{ GeV}^2$, 0.15 < y < 0.8

p^{jet} > 11 (8) GeV

-0.88 < η^{Jet} < 1.3

25

Beauty & Charm in Photoproduction $d\sigma \overline{/d\eta^{jet_1}(ep- > ecc(bb)X- > ejjX)}$

H1 99/00 e^+ data: $Q^2 \sim 0, \ 0.15 < y < 0.8 \parallel p_t^{jet} > 11(8)$ GeV, $-0.88 < \eta^{jet} < 1.3$

1000

dơ/dη^{jet 1} [pb] 800 Pythia res. $Q^2 < 1$ GeV ², 0.15 < y < 0.8 Cascade p₊^{jet} > 11 (8) GeV -0.88 < η^{Jet} < 1.3 NLO QCD ⊗ had 600 400 200 -0.5 0 0.5 η^{jet_1}

 \triangleright LO + PS QCD Models & NLO QCD (FMNR): Main differences in forward region.

- LO + PS QCD Models: Good description of shape and norm.
- NLO QCD (FMNR): \triangleright Fits within uncertainties.

CHARM

H1 Data (prel.)

Pythia

 $d\sigma/d\eta^{jet_1}$ (ep->eccX->ejjX)

Beauty Contributions from Resolved Photons $d\sigma/dx_{\gamma}^{obs}(ep->ebbX->ejjX)$

H1 99/00
$$e^+$$
 data: $Q^2 \sim 0, \ 0.15 < y < 0.8 \parallel p_t^{jet} > 11(8)$ GeV, $-0.88 < \eta^{jet} < 1.3$

BEAUTY

LO + PS QCD Models: PYTHIA shape okay but too low in normalisation.

CASCADE too hard.

▷ NLO QCD (FMNR):

Lower than data at low x_{γ}^{obs} .

Significant resolved like component $(x_{\gamma}^{obs} < 0.85).$

Charm Contributions from Resolved Photons $d\sigma/dx_{\gamma}^{obs}(ep->eccX->ejjX)$

H1 99/00
$$e^+$$
 data: $Q^2 \sim 0, \ 0.15 < y < 0.8 \parallel p_t^{jet} > 11(8)$ GeV, $-0.88 < \eta^{jet} < 1.3$

CHARM

▷ Significant resolved like component $(x_{\gamma}^{obs} < 0.85).$

 \triangleright LO + PS QCD Models:

PYTHIA with large excitation component okay, but too low for high x_{γ}^{obs} . CASCADE too hard.

▷ NLO QCD (FMNR):

Good agreement between Data and NLO QCD within (large) uncertainties!

Conclusion

- Measurement of beauty & charm dijet cross sections in photoproduction has been presented.
 H1 Silicon Vertex Detector '99/00 data.
- \triangleright High p_t :
 - * Beauty (Charm) fraction ~ 7% (~ 35%) of total sample with $x_{\gamma}^{obs} > 0.85$. \rightarrow In agreement with quark charge counting.
- ▷ Charm:
 - * Data in general agreement with NLO QCD prediction (within uncertainties).
 - * Resolved contributions somewhat underestimated by the NLO calculation.
- ▷ Beauty:
 - * Data somewhat higher than NLO QCD, PYTHIA and CASCADE. Shape well described.
 - * Main differences seen at low x_{γ}^{obs} and at lower p_t .

Backup – NLO Calculations

- ▷ FMNR: fixed order massive calculation: BGF and HO
- ▷ Calculations done in \overline{MS} scheme using CTEQ5M, GRV-HO and $m_C = 1.5 \text{ GeV} (m_B = 4.75 \text{ GeV}).$

$$\mu_r = m_t = \sqrt{m_q^2 + p_{t,q\bar{q}}^2}$$

$$\mu_f^{beauty} = m_t; \ \mu_f^{charm} = 2 \cdot m_t$$

- \triangleright p_t weighted k_t clustering jet algorithm used.
- ▷ Perturbative uncertainties estimated by variation of the scales μ_r and μ_f (1/2 2).
- Parameter uncertainties estimated by variation of the quark masses and the pdf (added quadratically).
- ▷ Parton to hadron level corrections done using PYTHIA.
- \triangleright Total uncertainties: $\sim 30\%$ for both, beauty and charm.