Prospects for SUSY at the LHC in light of Dark Matter

Howard Baer Florida State Unive

- ★ Supersymmetric models
 - WMAP allowed regions
- \star SUSY at LHC in mSUGRA
- \star Models with non-universal soft terms
 - scalar mass non-universality
 - gaugino mass non-universality

 $\begin{array}{l} m_0 = 100 \ GeV, \, m_{1/2} = 300 \ GeV, \, tan\beta = 2, \, A_0 = 0, \, \mu < 0, \\ m(\tilde{q}) = 686 \ GeV, \, m(\tilde{g}) = 766 \ GeV, \, m(\tilde{\chi}^0{}_2) = 257 \ GeV, \\ m(\tilde{\chi}^0{}_1) = 128 \ GeV. \end{array}$

Charged particles with $p_t > 2$ GeV, $|\eta| < 3$ are shown; neutrons are not shown; no pile up events superimposed.

Many SUSY models, each with large p-space

- \star SUSY models typified by large p-space
- ★ vast number of possible signatures at colliders
- \star WMAP result greatly reduces the possibilities!
- \star We will adopt the WMAP1 result
 - $\Omega_{CDM} h^2 = 0.113 \pm 0.009$
 - as a guide to prospects for SUSY discovery
 - at the LHC and ILC

Sparticle mass spectra

- \star Mass spectra codes
- ★ RGE running: $M_{GUT} \rightarrow M_{weak}$
 - Isajet (HB, Paige, Protopopescu, Tata)
 - $* \geq$ 7.72: Isatools
 - SuSpect (Djouadi, Kneur, Moultaka)
 - SoftSUSY (Allanach)
 - Spheno (Porod)

★ Website: http://kraml.home.cern.ch/kraml/comparison/

Search for SUSY at CERN LHC in mSUGRA model

- \star $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$ production dominant for $m \stackrel{<}{\sim} 1$ TeV
- \star lengthy cascade decays are likely
 - $\not\!\!\!E_T + \mathsf{jets}$
 - $1\ell + \not\!\!E_T + \mathsf{jets}$
 - $OS \ 2\ell + E_T + jets$
 - $-SS2\ell + E_T + jets$
 - $3\ell + \not\!\!E_T + \mathsf{jets}$
 - $-4\ell + \not\!\!E_T + \mathsf{jets}$
- ★ BG: W + jets, Z + jets, $t\bar{t}$, $b\bar{b}$, WW, 4t, ...
- \star Grid of cuts gives optimized S/B

Sparticle reach of LHC for 100⁻¹ **fb**

HB, Balazs, Belyaev, Krupovnickas, Tata: JHEP 0306, 054 (2003)

H. Baer, Pheno '06 talk, May 15, 2006

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

H. Baer, Pheno '06 talk, May 15, 2006

Main mSUGRA regions consistent with WMAP

- \star bulk region (low m_0 , low $m_{1/2}$)
 - nearly excluded

 \star stau co-annihilation region $(m_{ ilde{ au}_1} \simeq m_{ ilde{Z}_1})$

$$- \ m_{\widetilde{q}} \stackrel{<}{\sim} m_{\widetilde{g}}; \ \widetilde{Z}_2 o \ell \widetilde{\ell}, \ au \widetilde{ au}_1$$

★ HB/FP region (large m_0 where $|\mu| \rightarrow small$) - only \tilde{g} , \tilde{Z}_i , \tilde{W}_i accessible

- ★ A-funnel $(2m_{\tilde{Z}_1} \simeq m_A, m_H)$ - H, A, H^{\pm} accessible directly or via CDs
- ★ h corridor $(2m_{\widetilde{Z}_1} \simeq m_h)$
- \star stop co-annihilation region (particular A_0 values $m_{\tilde{t}_1} \simeq m_{\tilde{Z}_1}$)

Direct and indirect detection of SUSY DM

- ★ Direct search via neutralino-nucleon scattering
- ★ Indirect search for SUSY DM: (HB, J. O'Farrill)
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow b\bar{b}, etc.$ in core of sun (or earth): $\Rightarrow \nu_\mu \rightarrow \mu$ in ν telescopes * Amanda, Icecube, Antares
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \gamma$ in galactic core or halo
 - $\tilde{Z}_1 \tilde{Z}_1 \to q\bar{q}, etc. \to e^+$ in galactic halo
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{p}$ in galactic halo
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{D}$ in galactic halo
 - * \overline{D} recently detected (BESS)
 - * future: Gaseous Antiparticle Spectrometer (GAPS)-
 - $\cdot\,$ slow D; look for x-rays after capture on atoms
 - · HB and Profumo, JCAP 0512, 008 (2005)

Direct and indirect detection of neutralino DM

HB, Belyaev, Krupovnickas, O'Farrill: JCAP 0408, 005 (2004)

SUGRA models with non-universal scalars

- Normal scalar mass hierarchy (NMH):
- $BF(b \rightarrow s\gamma)$ prefers heavy 3rd gen. squarks
- $(g-2)_{\mu}$ prefers light 2nd gen. sleptons
- $m_0(1) \simeq m_0(2) \ll m_0(3)$
 - (preserve FCNC bounds)
- motivation: reconcile $BF(b \to s\gamma)$ with $(g-2)_{\mu^{\varepsilon}}^{\widetilde{\mathfrak{g}}^{\text{70}}}$
 - HB, Belyaev, Krupovnickas, Mustafayev
 - JHEP 0406, 044 (2004)

Normal scalar mass hierarchy: parameter space

- $m_0(1) \simeq m_0(2) \ll m_0(3)$
- LHC: light sleptons, enhanced leptonic cascade decays
- ILC: first two gen. sleptons likely accessible; squarks/staus heavy

H. Baer, Pheno '06 talk, May 15, 2006

SUGRA models with non-universal Higgs mass (NUHM1)

- $m_{H_u}^2 = m_{H_d}^2 \equiv m_{\phi}^2 \neq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SO(10) SUSYGUTs where $\hat{H}_{u,d} \in \phi(10)$ while matter $\in \psi(16)$
- $m_{\phi}^2 \gg m_0 \Rightarrow$ higgsino DM for any $m_0, m_{1/2}$
- $m_{\phi}^2 < 0 \Rightarrow$ can have A-funnel for any $\tan \beta$

H. Baer, Pheno '06 talk, May 15, 2006

NUHM2 (2-parameter case)

- $m_{H_u}^2 \neq m_{H_d}^2 \neq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SU(5) SUSYGUTs where $\hat{H}_u \in \phi(5)$, $\hat{H}_d \in \phi(ar{5})$
- can re-parametrize $m_{H_u}^2, m_{H_d}^2 \leftrightarrow \mu, m_A$ (Ellis, Olive, Santoso)
- large S term in RGEs \Rightarrow light $\tilde{u}_R, \ \tilde{c}_R$ squarks, $m_{\tilde{e}_L} < m_{\tilde{e}_R}$

NUHM2: m₀=300GeV, m_{1/2}=300GeV, tanβ=10, A₀=0, m_t=178GeV

H. Baer, Pheno '06 talk, May 15, 2006

Non-universal gaugino masses

- ★ SUGRA models where GKF transforms non-trivially (Snowmass '96)
- ★ Heterotic superstring models with orbifold compactification: SUSY breaking dominated by the moduli field
- ★ Mixed modulus-AMSB (KKLT construction)
- ★ Extra-dimensional SUSY GUT models where SUSY breaking is communicated from the SUSY breaking brane to the visible brane via gaugino mediation (e.g. Dermisek-Mafi model)
- ★ Here we adopt a phenomenological approach of independent M_1 , M_2 , M_3 but require consistency with WMAP
 - MWDM: HB, Mustafayev, Park, Profumo JHEP0507, 046 (2005)
 - BWCA DM: HB, Krupovnickas, Mustafayev, Park, Profumo, Tata
 - Low M_3 DM: HB, Mustafayev, Park, Profumo, Tata

H. Baer, Pheno '06 talk, May 15, 2006

Sparticle mass spectra vs M_1

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan \beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

H. Baer, Pheno '06 talk, May 15, 2006

$m(\ell^+\ell^-)$: mass gap observable at LHC for MWDM

Bino-wino co-annihilation (BWCA) scenario

- If $M_1/M_2 < 0$, then no mixing between bino-wino
- Can only reduce relic density via bino-wino co-annihilation when $M_1\simeq -M_2$ at $Q=M_{weak}$

2005/07/26 09.06

In MWDM and BWCA: $BF(\widetilde{Z}_2 \rightarrow \widetilde{Z}_1 \gamma)$ enhanced!

MWDM: $M_2 \neq m_{1/2}$, $tan\beta=10$, $A_0 = 0$, $\mu > 0$, $m_t = 178 \text{ GeV}$ BWCA: $M_2 \neq m_{1/2}$, $tan\beta=10$, $A_0 = 0$, $\mu > 0$, $m_t = 178 \text{ GeV}$ m_{1/2} (TeV) 6.0 m_{1/2} (TeV) 7.1 0.8 1.2 0.09 0.12 0.7 1 10-2 0.11 0.6 0.10 0.8 0.5 10-4 0.4 0.6 0 0.09 0.3 0.11 0.05 0.3 0.4 0.2 LEP 2 0.2 0.1 LEP2 1.8 2 m₀ (TeV) 1.8 2 m_o (TeV) 0.2 0.4 0.6 0.8 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1 1

Haber+Wyler; Ambrosanio+Mele; Baer+Krupovnickas: JHEP 0209, 038 (2002)

H. Baer, Pheno '06 talk, May 15, 2006

Mixed higgsino DM from a low M_3 (LM3DM)

• low $M_3 \Rightarrow$ low $m_{\tilde{g}}, m_{\tilde{q}}, \mu$

Sparticle mass spectra for LM3DM

2006/02/14 10.59

• low $m_{\tilde{g}}, m_{\tilde{q}}, \mu \Rightarrow$ huge DM detection rates!

Direct/indrct DM rates greatly enhanced for LM3DM

$\tilde{g} \rightarrow g \widetilde{Z}_i$ radiative decay in LM3DM: $\tilde{g} \tilde{g} \rightarrow dijet + \not{\!\! E}_T$

2006/02/03 16.37

See talk by A. Mustafayev

Conclusions

- \star SUSY is standard way beyond the SM
- ★ SUGRA models most naturally encompass DM: thermal WIMPS
- ★ WMAP bound $\Omega_{\widetilde{Z}_1} h^2 = 0.113 \pm 0.009$ especially constraining
 - bulk, $\tilde{\tau}$ coann., HB/FP, A-funnel, h-funnel, \tilde{t}_1 coann.
- **\star** Various regions \Rightarrow distinct collider/DM signatures
- \star Non-universality
 - normal scalar mass hierarchy (NMH)
 - NUHM1, NUHM2 models
 - mixed wino DM
 - bino-wino co-annihilation DM
 - mixed higgsino DM if M_3 reduced

Weak Scale Supersymmetry

HB and X. Tata Spring, 2006; Cambridge University Press

- ★ Part 1: superfields/Lagrangians
 - 4-component spinor notation for exp'ts
 - master Lagrangian for SUSY gauge theories
- ★ Part 2: models/implications
 - MSSM, SUGRA, GMSB, AMSB, \cdots
- ★ Part 3: SUSY at colliders
 - $\ {\sf production/decay/event} \ {\sf generation}$
 - collider signatures
 - R-parity violation

