(The Tension Between Unification and) A $U(1)_X$ Solution to the μ Problem of the MSSM

David Morrissey

University of Michigan

Based work done in collaboration with James Wells [hep-ph/0512019]

University of Wisconsin-Madison, May 15, 2006

The μ Problem of the MSSM

• The minimal supersymmetric standard model (MSSM) has only one dimensionful supersymmetric parameter, μ :

 $W_{MSSM} \supset \mu H_u \cdot H_d$

where $H_u = (1, 2, 1/2)$ and $H_d = (1, 2, -1/2)$ are the two Higgs boson doublets.

• The μ parameter should be of order $\mu \sim M_{SUSY} \lesssim 1$ TeV.

• $\mu \sim 1$ TeV is technically natural because of supersymmetry. But why $\mu \sim 1$ TeV $\sim M_{SUSY}$? Why not $\mu \sim M_{GUT}$ or M_{Pl} ?

μ and the Lightest MSSM Higgs

• The LEP-II bound on a SM-like Higgs boson is

 $m_h > 114.4 \,\,{
m GeV}.$

Except for some loopholes, this also applies to the lightest MSSM Higgs.

• At tree-level in the MSSM,

 $m_h < M_Z \, \cos 2\beta.$

- Loop corrections can increase the mass above the experimental limit for $M_{SUSY},~\mu\gtrsim 1~{\rm TeV}.$
- However, these parameters are related to M_Z by

 $M_Z^2 \sim \mu^2 - M_{SUSY}^2.$

 \Rightarrow small fine-tuning problem within the MSSM.

A Singlet Solution

• Both of these difficulties can be solved by replacing the μ term by a new field, *S*, that develops a vacuum expectation value (VEV),

 $\mu H_u \cdot H_d \to \lambda \, S \, H_u \cdot H_d.$

- Since $\langle S \rangle$ is determined by M_{SUSY} , this relates μ to the scale of supersymmetry breaking.
- This replacement leads to a new F contribution to the Higgs mass. The tree-level upper bound becomes

 $m_h^2 \le M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta.$

• The coupling λ runs large in the UV.

 $\lambda(M_Z) \lesssim 0.7$ to avoid a Landau pole below M_{GUT} .

• Even so, the tree-level bound can exceed 110 GeV, removing the need for large loop corrections.

But...

- The new field S should be a singlet under $G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y.$
- However S should be charged under a new symmetry to forbid the usual μ term as well as new mass terms.
- An uncharged singlet may also develop a large VEV from loops. This can destabilize the gauge hierarchy. [Bagger+Poppitz '93]
- Global symmetries are problematic:
 - Discrete symmetries are plagued by domain walls.
 - Continuous global symmetries lead to axions.

A $U(1)_X$ Resolution

- A safer choice is to protect S with a new $U(1)_X$ gauge symmetry.
- In this case the Goldstone mode is eaten to form a massive Z'.
- There is also an extra *D*-term contribution to the Higgs mass bound $m_h^2 \leq M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + 2g_x^2 v^2 (h_u \cos^2 \beta + h_d \sin^2 \beta)^2,$ where h_u and h_d are the $U(1)_X$ Higgs charges.
- We will focus on this possibility.

A Tension with Unification?

- One of the attractive features of the MSSM is that it is consistent with gauge unification.
- For the $U(1)_X$ gauge theory to be consistent, we must assign charges in an anomaly free way.
- In general, this requires new matter fields.
- Adding new matter to the MSSM can disrupt unification.
- Is it possible to solve the μ problem with a gauged $U(1)_X$ and preserve gauge unification?

Assumptions

- 1. All the terms in the MSSM superpotential (except the μ term) appear in the superpotential of the new model. The usual μ term is forbidden by the $U(1)_X$ gauge symmetry, and is replaced with $\lambda S H_u \cdot H_d$.
- 2. $U(1)_X$ charges are family-universal. This avoids new flavour-changing effects.
- 3. The exotic matter needed to cancel $U(1)_X$ anomalies consists of G_{SM} singlets, or has the G_{SM} quantum numbers of complete SU(5) multiplets.

This is the simplest way to preserve gauge unification.

Charges

• The terms in the superpotential are

$$W = y_u Q \cdot H_u U^c - y_d Q \cdot H_d D^c - y_e L \cdot H_d E^c + \lambda S H_u \cdot H_d + (exotics).$$

• The $U(1)_X$ charges of these fields must satisfy

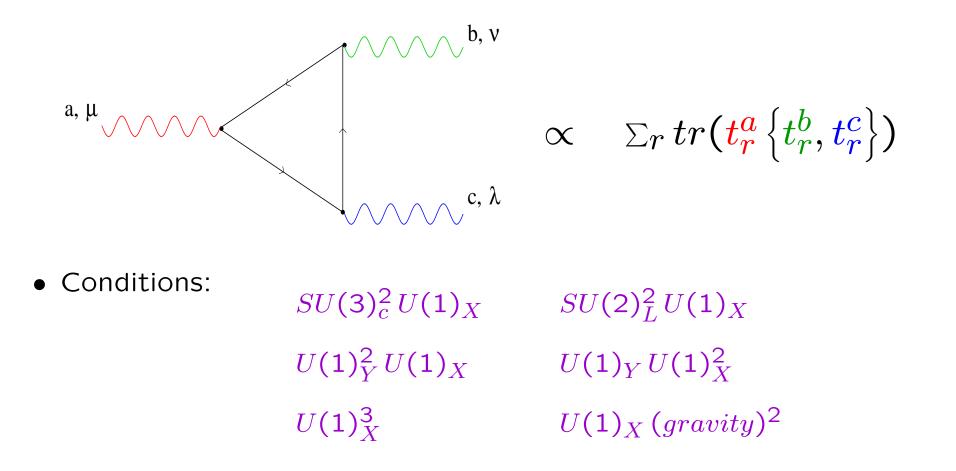
$$q + u + h_u = 0$$
 $q + d + h_d = 0$
 $l + e + h_d = 0$ $s + h_u + h_d = 0.$

- The action of any $U(1)_X$ on the MSSM fields is determined by the values of the seven $U(1)_X$ charges q, u, d, l, e, h_u , h_d .
- Gauge invariance implies three independent conditions on them. \Rightarrow we can decompose any $U(1)_X$ into four basis U(1)'s.
- A convenient set is: $U(1)_Y$, $U(1)_{B+L}$, $U(1)_{\psi}$, $U(1)_{\chi}$.

 $(E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi})$

Gauge Anomalies

• For gauge anomaly cancellation, it is sufficient for the triple gauge boson triangle diagrams to vanish:



• The last two conditions can be satisfied by adding only G_{SM} singlets.

${\cal G}_{SM}$ Exotics Required

- Suppose all exotics are G_{SM} singlets.
- The $SU(3)_c^2 \times U(1)_X$ anomaly condition is then

 $0 = n_g(2q + u + d)$

• Gauge invariance of $y_u Q \cdot H_u U^c$ and $y_d Q \cdot H_d D^c$ implies

$$2q + u + d + (h_u + h_d) = 0.$$

- Together, these conditions imply $h_u + h_d = 0$, so the $U(1)_X$ symmetry does not protect the μ term.
- New coloured particles are needed to avoid this conclusion.

Gauge Unification

• The gauge couplings of the MSSM unify near $M_{GUT} \simeq 2 \times 10^{16}$ GeV. The MSSM matter fields fill out complete SU(5) multiplets,

$$\overline{5} = (D^c, L) = (\overline{3}, 1, \frac{1}{3})$$

10 = $(Q, U^c, E^c) = (3, 2, \frac{1}{6}) \oplus (\overline{3}, 1, -\frac{2}{3}) \oplus (1, 1, 1)$

- Adding new coloured particles can disrupt these nice features.
- Unification will be preserved if the new coloured particles are members of complete SU(5) multiplets.

Non-Universal Charges Required!

- The most natural possibility is for the components of the exotic multiplets to all have the same $U(1)_X$ charge. (*i.e.* $SU(5) \times U(1)_X$)
- The linear mixed anomaly conditions become

 $SU(3)_c^2 \times U(1)_X : 0 = n_g(2q + u + d) + M$ $SU(2)_L^2 \times U(1)_X : 0 = n_g(3q + l) + (h_u + h_d) + M$ $U(1)_Y^2 \times U(1)_X : 0 = n_g(q + 8u + 2d + 3l + 6e) + 3(h_u + h_d) + 5M$ where $M = \sum_a (5_a + \overline{5}_a) + 3\sum_b (10_b + \overline{10}_b) + \dots$

• These three linear conditions, together with gauge invariance, form a degenerate system with $(h_u + h_d) = 0$.

 \Rightarrow universal SU(5) multiplets can't protect the μ term.

Options

- Maybe the μ term isn't so bad after all? [Giudice+ Masiero '88]
- EMSSM: $27 \oplus 27 \oplus 27 \oplus (1, 2, 1/2) \oplus (1, 2, -1/2)$ [King,Moretti,Nevzorov '05]

$(27 \in E_6)$

This is anomaly free and unifies, but has a μ -like problem for the extra pair of doublets.

- Non-family universal charge assignments.
 [Demir,Kane,Wang '05; Erler,Langacker,Li '02; ...] FCNC's may be an issue.
- Consider instead adding a single " $\mathbf{5} \oplus \overline{\mathbf{5}}$ " with non-universal charges within the multiplets:

 $5 = (1, 2, 1/2, L) \oplus (3, 1, -1/3, D)$ $\overline{5} = (1, 2, -1/2, \overline{L}) \oplus (\overline{3}, 1, 1/3, \overline{D})$

with $D \neq L$, $\overline{D} \neq \overline{L}$.

An Example with Non-Universal Charges

- Adding a single " $5 \oplus \overline{5}$ " of exotics and some extra G_{SM} singlets, it is possible to protect the μ term with the $U(1)_X$ while cancelling anomalies and preserving gauge unification.
- For example, imposing SO(10) relations on the MSSM matter charges, q = u = e = d = l, the solution to the anomaly equations is

$$q = -(\bar{L} + L)/4(n_g - 1)$$

$$(h_u + h_d) = (\bar{L} + L)/(n_g - 1)$$

$$(h_u - h_d) = 0$$

$$(\bar{D} + D) = n_g(\bar{L} + L)/(n_g - 1)$$

$$(\bar{D} - D) = -(n_g - 1)(\bar{L} - L)/n_g.$$

Several G_{SM} singlets with non-zero $U(1)_X$ charges are needed as well.

• The only allowed $U(1)_X$ in this case is $U(1)_{\psi} \in E_6$ (on MSSM fields). For SU(5) compatible charges, the only possible $U(1)_X$ is a combination of the $U(1)_{\psi}$ and $U(1)_{\chi}$ subgroups of E_6 .

A GUT Interpretation?

- For the non-universal exotic multiplets we have considered, it is difficult to embed the model simply in a GUT.
- We must think of the exotic "multiplets" as coming from distinct split GUT representations,

 $\overline{\mathbf{5}}_a \oplus \overline{\mathbf{5}}_b = (D_a^c, L_a)_{Q_a} \oplus (D_b^c, L_b)_{Q_b} \to (D_a^c, L_b) = \text{non-universal "}\overline{\mathbf{5}}$ ".

- This can arise in an extra-dimensional scenario with SU(5)-breaking orbifold boundary conditions. [Hall+Nomura '01]
- However, with split multiplets, the unification of gauge couplings with only MSSM matter would appear to be a lucky accident.

Summary

• Adding a $U(1)_X$ gauge symmetry to the MSSM can solve the μ problem and increase the lightest Higgs boson mass;

 $\mu H_u \cdot H_d \to \lambda \, S \, H_u \cdot H_d.$

- New coloured exotic matter is needed to forbid the original μ term and cancel $U(1)_X$ anomalies.
- If the new matter has the form of complete GUT multiplets, in order to preserve gauge unification, at least one of the multiplets must have non-universal $U(1)_X$ charges.
- A single non-universally charged " $\mathbf{5} \oplus \overline{\mathbf{5}}$ " (and some singlets) is sufficient to cancel anomalies and protect the μ term.
- The need for non-universal charges makes it difficult to embed any such model simply in a GUT, and implies some degree of tension with unification.

Singlet Tadpoles

- Singlet tadpole supergraphs can be quadratically divergent.
- With supersymmetry breaking insertions, these can generate effective superpotential and bosonic potential operators. For $X = M_{\text{Pl}}(1 + \tilde{m}\theta^2 + \tilde{m}^*\bar{\theta}^2 + |\tilde{m}|^2\theta^4)$,

$$\int d^4\theta \; \frac{X}{M_{\rm Pl}^2} \Lambda^2 \,\widehat{S} \longrightarrow \int d^2\theta \; \frac{\tilde{m}^* \Lambda^2}{M_{\rm Pl}} \,\widehat{S} + \frac{|\tilde{m}|^2 \Lambda^2}{M_{\rm Pl}} \,S$$

• For $\Lambda \sim M_{\rm Pl}$, the expectation value of S tends to be much larger than $\tilde{m} \sim {\rm TeV}$.

$U(1)_x$ Decomposition

- A convenient basis is $U(1)_Y$, $U(1)_{B+L}$, and the $U(1)_{\psi}$ and $U(1)_{\chi}$ subgroups of E_6 .
- If we define $U(1)_X$ by the charges $\{d, e, h_u, h_d\}$, the charge of a field ϕ_i is

$$Q_x^i = \frac{2}{5} (-3d + e + 2h_u - 3h_d) Q_Y^i + \frac{1}{2} (-3d - e + h_u - 3h_d) Q_{B+L}^i - \frac{1}{4} (h_u + h_d) 2\sqrt{6} Q_{\psi}^i + \frac{1}{20} (6d - 2e + h_u + h_d) 2\sqrt{10} Q_{\chi}^i$$

- The operator $H_u \cdot H_d$ is only charged under $U(1)_{\psi}$.
- With MSSM fields alone, only $U(1)_Y$ and the $U(1)_{B-L}$ combination of $U(1)_{\chi}$ and $U(1)_{B+L}$ is anomaly free.

• E_6 Charges

27	G_{SM}	$2\sqrt{6}U(1)_{\psi}$	$2\sqrt{10} U(1)_{\chi}$
 Q	(3, 2, 1/6)	1	-1
L	(1, 2, -1/2)	1	3
U^c	$(ar{3},1,-2/3)$	1	-1
D^c	$(ar{3},1,1/3)$	1	3
E^c	(1,1,1)	1	-1
N^c	(1, 1, 0)	1	-5
 H	(1, 2, -1/2)	-2	-2
P^c	$(ar{3},1,1/3)$	-2	-2
H^c	(1, 2, 1/2)	-2	2
P	(3, 1, -1/3)	-2	2
S	(1, 1, 0)	4	0

• $E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$.

$$f 27 = \left\{egin{array}{ll} 16 \oplus 10 \oplus 1, & ext{under } SO(10) \ \overline{5} \oplus 10 \oplus 1 \oplus 5 \oplus \overline{5} \oplus 1, & ext{under } SU(5) \end{array}
ight.$$