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Recent history confirms that hadron colliders can and will succeed

at precision mass measurements:

Mtop = 172.5± 2.3 GeV

MW = 80.454± 0.059 GeV (pp data only)

This is encouraging, because masses are the most important
observables in new physics models, notably supersymmetry.



Most of what we do not already know about supersymmetric exte nsions of

the Standard Model involves the soft SUSY-breaking terms wi th positive

mass dimension.
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The apparent unification of gauge

couplings in the MSSM invites us to

extrapolate the soft masses up to high

scales, to see if they obey some

Organizing Principle.



Gaugino Mass Unification is a popular and recurring theme.

M1(Q) = M2(Q) = M3(Q) ≡ m1/2 at Q ≈ 2× 1016 GeV,

resulting in

M1 : M2 : M3 = 1 : 2 : 6

for Q near the TeV scale. To test this, or alternatives to it, we have to relate

physical masses to running masses in the Lagrangian.

Goal: reduce purely theoretical sources of uncertainty to a
negligible level, if possible.

(Experimental sources of error are a big problem, but not MY problem.)
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The determination of the running gluino mass parameter M3 is
crucial. It feeds “strongly” into any attempt to connect TeV scale
physics with high-scale Organizing Principles in SUSY. The
uncertainty in the gluino mass will likely dominate the errors in this
effort, in the long run.



More generally, 2-loop (and some 3-loop) corrections

to superpartner and Higgs masses will be mandatory if

SUSY is correct, if we want experiment to be the

dominant source of error in understanding Organizing

Principles of SUSY breaking.



I have computed the 2-loop fermion pole masses in a general

renormalizable theory with massless gauge bosons, in hep-p h/0509115.

Each diagram is reduced to a linear

combination of basis integrals,

ready to be computed numerically

using the computer program TSIL

(SPM, D.G. Robertson 2005).

Special case applications within the

MSSM include the top quark mass,

neutralino and chargino masses,

and the gluino.

BFS BFV MSSFFS MSFFSF VFSSSS

VSFFFS VFSSFF YFSSS MV SFFS MV FFSF

MSSFFV VFSSSV VSFFFV VV FFFS YFSSV (∗)

VV FFFV MV FFV F MV V FFV VFV V V V YFV V V (∗)

VFV V FF VFV V SS YFV V S

+ fermion mass insertions

+ ghost diagrams

+ counterterms



Checks on the calculation of 2-loop fermion pole masses:

• Independent of gauge-fixing parameter

Individual diagrams depend on ξ; cancels in pole mass

• Pole mass is renormalization group invariant

Checked analytically at 2-loop order; numerical check below

• Absence of divergent logs on shell

Individual diagrams have log(1− p2/m2), divergent as p2 → m2;

must and do cancel in pole mass

• Checks in (unphysical) supersymmetric limit

Agrees with earlier calculation of scalar pole mass (SPM hep-ph/0502168)



Gluino pole mass at 2-loop order

(Y. Yamada, hep-ph/0506262; SPM, hep-ph/0509115)

The full formulas are a little too complicated to be presented in a talk, but are in

the second paper. A C program based on TSIL can be obtained at:

zippy.physics.niu.edu/gluinopole/

Instead, I’ll just show some simple special approximations.

In the following, squarks are always assumed to be degenerate and quarks to be

massless, for simplicity. Also,

αs, M3, and msquark

refer to running parameters in the DR scheme, evaluated at a renormalization

scale Q = M3(Q).

The pole mass Mpole
g̃ is computed in terms of these.



Example: In the special case of degenerate running masses, M3 = msquark,

the result for the pole mass simplifies and can be written analytically:

Mpole
g̃ = M3

[
1 +

αs

4π
9 +

(αs

4π

)2 {
54ζ(3) + π2(53− 36 ln 2)− 90

}
+ . . .

]

= M3

[
1 + 0.716 αs + 1.59 α2

s + . . .
]

(M3 and αs are running parameters evaluated at Q = M3 in non-decoupled

theory.)

However, the corrections for heavier squarks are quite larg e. . .



Dependence of gluino pole mass correction on the squark mass es

0 1 2 3 4 5
msquark/M3

1.00

1.05

1.10

1.15

1.20

1.25

M
gl

ui
no

 p
ol

e/M
3

One-loop
Two-loop

For heavier squarks, part of the

large corrections come from large

logarithms that can be resummed

using the renormalization group.

For msquark ≫M3:

Mpole
g̃ = M3

[
1 + 0.955(L + 1)αs + (0.46L2 + 1.53L + 0.90)α2

s + . . .
]

where L ≡ ln(msquark/M3).

Obvious Questions: How big is the theoretical error? Can we e stimate the

3-loop corrections? Is perturbation theory under control?



How NOT to estimate theoretical error: RG scale dependence

Run αS , M3 from Q0 to a new RG scale Q, recompute pole mass:

Red = 1-loop, Blue = 2-loop

0.3 0.5 1 2 3
Q/Q0

1.00

1.05

1.10

1.15

1.20

1.25

M
gl

ui
no

 p
ol

e/M
3

← msquark/M3 = 3

← msquark/M3 = 1.5

← msquark/M3 = 0.9

Scale dependence of 2-loop result is < 1%.

But, the 2-loop correction is much larger than the 1-loop sca le dependence!

Dependence of the computation on the choice of RG scale signi ficantly
underestimates the true theoretical error.



A more useful estimate of the error uses RG and effective field theory techniques

to obtain the 3-loop contributions for large

L = ln(msquark/M3).

Crucial ingredients:

• 2-loop threshold corrections for M3 in MSSM

(SPM 2006)

• 2-loop threshold corrections for αs in MSSM

(Harlander, Mihaila, Steinhauser 2005)

• 2-loop pole mass in a theory with only fermions

(Gray, Broadhurst, Grafe, Schilcher 1990)

• 3-loop mass beta function in a theory with only fermions, but in different reps

(Tarasov 1982, unpublished, available from KEK server, only in Russian!)



Three-loop gluino mass corrections for heavy squarks

Exploit the fact that beta functions are easier to compute, known to≥3-loop

order. Let the running parameters in the full MSSM be αs, M3, and in the

effective theory with squarks decoupled, α̂s, M̂3.

Mtop

Mg̃

Msquarks

L = ln(
Msquarks

M3

)

Standard Model: 4-loop QCD beta function known

3-loop α̂s and M̂3 beta functions known (same as “Split SUSY”)

3-loop M
pole
g̃ known in terms of α̂s and M̂3

2-loop threshold corrections give (α̂s, M̂3)↔ (αs, M3)

Full MSSM, no decoupling: 4-loop SUSYQCD beta functions known



Using the effective field theory matching and RG running technique, one obtains

all terms of order

αn
s Ln, αn

s Ln−1, αn
s Ln−2

for all n. The 3-loop pole mass for the gluino is:

Mpole
g̃ = M3

[
1 + 0.955 (L + 1) αs

+ (0.46L2 + 1.53L + 0.90) α2
s

+ (0.19L3 + 0.32L2 + 1.38L + ??? ) α3
s

+ O(M2
3 /m2

Q̃
) + O(α4

s)
]

• The “leading log” approximation is not good unless L is VERY large.

• Only a real 3-loop pole mass calculation can tell us what ??? is.



Three-loop log-enhanced effects on the gluino pole mass
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The three-loop log corrections are

only shown for

msquarks/M3 > 1.5,

where the approximation may start

to become meaningful.

The actual 3-loop correction involves a non-log-enhanced piece, not captured in

this analysis. However, circumstantially, this seems likely to be under 1%.



Another handle on the 3-loop contribution to the gluino pole mass.

The 3-loop gluino pole mass in the effective theory without squarks can be

inferred from Melnikov and van Ritbergen (1999):

Mpole
g̃ = M̂3

[
1 + 0.955 α̂s + 1.69 α̂2

s + 3.4 α̂3
s + O(α̂4

s)
]

Note well: this is the result in the effective theory without squarks.

Equivalently, this is the result you would get if you “forgot” to compute all diagrams

involving squarks (and worked in MS instead of DR).

BUT WAIT! Maybe the 3-loop contribution is only small here be cause of an

accidental cancellation?



In fact, there is a fermion-boson loop cancellation (but not due to SUSY!)

Divide the 3-loop contribution into eleven distinct group theory invariants:

Mpole
g̃ |3-loop/(α̂3

sM3) = 3.4

=
[
+13.8

−11.4 (massless quarks in loop)

+1.7 (massless quarks in loops)

−0.9

+(seven smaller terms)
]

The big contributions all come from diagrams without heavy particle loops.

So maybe it is roughly numerically correct to just add this to the existing

2-loop contribution?



Including the contribution of gluons and quarks:
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Neglects, in the 3-loop part:

• squark loop effects not enhanced by logs

• epsilon scalars in DR



2-loop corrections to scalar self-

energies and pole masses in

a general renormalizable theory

(hep-ph/0502168)

(Approximation: vector boson

masses neglected in diagrams with

more than one vector propagator.)

Applications to Higgs masses,

slepton masses and squark

masses in the MSSM.

+ fermion mass insertions + ghosts

+ counterterms



SUSYQCD corrections to squark masses in MSSM

Example: In the special case of degenerate running masses, mQ̃ = mg̃ = Q,

the result for the pole mass simplifies:

M
2

Q̃
= m

2

Q̃

[
1 +

αs

4π

(
32

3

)
+

(
αs

4π

)
2
{

112

3
+

664π2

27
+

32π2ln2

9
−

16ζ(3)

3

}]

= m
2

Q̃

[
1 + 0.849 αs + 1.89 α

2

s

]

There are no large logs here (only one mass scale!), so this illustrates the intrinsic

size of typical SUSYQCD 1-loop (∼ 4%) and 2-loop (< 1%) corrections to the

squark masses.



Renormalization scale ( Q) dependence of calculated squark pole mass
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Squark mixing, quark masses, and

electroweak effects neglected; all

squarks taken degenerate with each

other and gluino at tree level.

Dashed lines are ±2% variation of αs.

Remaining scale dependence (from 3 loops and beyond) is small.

However, as usual, this proves little, since the 2-loop correction is much larger

than the 1-loop scale dependence.



Dependence of squark mass correction on the gluino mass
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A large part of the squark mass correction is due to the gluino mass.

In realistic models, effects due to variation in squark masses, top and bottom

Yukawa effects, electroweak effects are significant, too. The general formulas (not

shown here) take care of that.



Questions

• How, precisely, does the gluino pole mass relate to the gluino

mass that will be reported by LHC experiments?

Is the difference negligible?

• How, precisely, do the other sparticle pole masses relate to the

masses that will be reported by the LHC and ILC?

The differences seem unlikely to be negligible.

• What will be the best way(s) to organize input parameters vs.

output parameters?

• What, if anything, can the ILC do to help pin down the gluino

mass parameter?


