Reinhard Schwienhorst

Search for W' boson production in the top quark decay channel

MICHIGAN STATE UNIVERSITY

on behalf of the DØ collaboration

Pheno 2006

<u>Outline</u>

- Introduction
 - Single top quark production
 - New heavy boson W'
- Analysis procedure
- Result
- Conclusions

Single Top Quark Production

- Neural Network analysis with 230 pb⁻¹ published
 Likelihood-based analysis with 360 pb⁻¹
 - See talk by Ernest Aguilo on Tuesday

Reinhard Schwienhorst, MSU

New heavy boson W'

- Many extensions of the SM involve heavy gauge bosons
 - Typically called W' and Z'
 - From larger, extra gauge symmetry groups
 - Could interact differently with leptons and quarks
- Current limits: $M(W' \rightarrow leptons) > 786 \text{ GeV}$

W' in the hadronic channel

- W' might only decay hadronically
 - Example: right-handed interaction, $M(v_R) > M(W')$
 - Current limits: $M(W' \rightarrow qq') > 800 \text{ GeV}$

W' in the single top quark channel

- Single top quark production is the ideal place to search for hadronic decays of a W'
 - New physics coupling to heavy quark
 - Current limit (CDF Run I): M(W') > 566 GeV
- W' model used here: W' \rightarrow tb with SM-like couplings
 - Include interference with SM W boson in event generation

W' final state invariant mass

MUON SYSTEM

Experimental Setup

Fermilab Tevatron in Run II

Proton-Antiproton Collider CM Energy 1.96TeV → Energy Frontier

Analysis procedure

- Follow procedure used in DØ single top publication
 230 pb⁻¹ dataset
 - Same background estimation methods, efficiencies, ...
- Apply s-channel single top selection cuts
 - Lepton p_T >15GeV, MET>15GeV, jet p_T >15GeV
 - Jet selection: $2 \le n_{jets} \le 3$
 - Reduce top pair background
- Analyze final state invariant mass distribution
 Probe several W' mass points

Final state invariant mass

- Use $\sqrt{\hat{S}}$ distribution to set limits - In window $400\text{GeV} \le \sqrt{\hat{S}} \le 1000\text{GeV}$
- Including all systematic uncertainties

	signal	backgrounds
• b-tag modeling	4 - 16%	5 - 20%
 Jet energy calibration 	1 - 2%	15 - 30%
• Others (trigger, ID,)	1 - 5%	1 - 5%

• Set limits separately for M(W') = 600 GeV, 700 GeV, 800GeV

	σ _{600 GeV}	σ _{700 GeV}	σ _{800 GeV}
Expected limit:	< 1.8 pb	< 1.6 pb	< 2.1 pb
Measured limit:	< 1.7 pb	< 1.4 pb	< 2.1 pb

Conclusions/Outlook

- Search for new heavy boson W' in 230pb⁻¹ of DØ data
 - Model: left-handed W' with SM couplings
 - Including interference with SM
- No evidence for a W' boson
- Mass limit: M(W') > 650 GeV
- Outlook:
 - Also test other W' models (right-handed coupling, ...)
 - With several fb⁻¹, can reach more than 800 GeV

Additional Material

Analysis Strategy

Event Selection

- Trigger:
 - Electron + ≥ 1 jets, muon + ≥ 1 jets
- Lepton:
 - 1 electron: $p_{\rm T} > 15 \text{GeV}, |\eta^{\text{det}}| < 1.1$
 - $-1 \text{ muon: } p_{\mathrm{T}} > 15 \text{GeV}, |\eta^{\text{det}}| < 2.0$
- Neutrino: $\not\!\!\!E_T > 15 \text{GeV}$
- Jets:

 $-p_T > 15 \text{GeV}, |\eta^{\text{det}}| < 3.4, p_T (\text{jet 1}) > 25 \text{GeV}$ $|\eta^{\text{det}}(\text{jet1})| < 2.5$

- $-2 \le n_{jets} \le 3$
- ≥ 1 b-tagged jet
- Reject mis-reconstructed events

Reinhard Schwienhorst, MSU

Background Modeling

- Based on data as much as possible
- W/Z+jets production
 - Estimated from MC/data
 - Distributions from MC
 - Normalization from pre-tagged sample
 - Flavor fractions from NLO
- Multijet events (misidentified lepton)
 - Estimated from data
- Top pair production
 - Estimated from <u>MC</u>
- Diboson (WZ, WW)
 - Estimated from <u>MC</u>

Final state invariant mass

Final State Invariant Mass

