Gauge Mediation from Emergent SUSY

Siew-Phang Ng Bartol Research Institute.

> [Goh, Luty & SPN(hep-th/0309103)] [Goh, SPN & Okada(hep-ph/0511301)] [Goh, SPN & Okada(in progress)]

*Presented at the Pheno 2006 Symposium, University of Wisconsin, Madison, Wisconsin on May 15-17, 2006.

 ${\sf Background}$

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Introduction

Background

Introd	luction					
1111100	luction					

Background

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

What is Gauge Mediation from Emergent Supersymmetry?

Gauge Mediation from Emergent SUSY – 3 / 17

Background

Introduction

Background

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

What is Gauge Mediation from Emergent Supersymmetry? Motivation

An Alternative to GMSB

- No need for traditional DSB
- Averts gravitino constraints
- Different phenomenology
- Part of Susy w.o. Susy
 - No Susy flavor problem
 - Another class of realizations

Big Picture

CFT AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Big Picture

Gauge Mediation from Emergent SUSY – 4 / 17

GMESTalk2.tex

Big Picture I: CFT

Introduction

Big Picture

CFT AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Key assumption: We live in a superconformal basin.

Big Picture I: CFT

Features

point

Start at the edge

Flows towards the fixed

Flow terminated before f.p.

Gauge Mediation from Emergent SUSY – 5 / 17

Big Picture I: CFT

point Flow terminated before f.p. Subtler Features

- Susy breaking operators
- Anomalous dimensions
- Fundamental vs Emergent fields
- **Emergent Susy**

Gauge Mediation from Emergent SUSY -5 / 17

Big Picture II: AdS dual

n	+ r	0			\sim		0	n	
		U	u		L		U		
						•••			

Big Picture

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Key assumption: There are no light bulk scalars.

Big Picture II: AdS dual

Big Picture II: AdS dual

Gauge Mediation from Emergent SUSY - 6 / 17

Big Picture

Setup

 $\mathsf{Explicit}\ \mathsf{Model}$

EoM Solutions

SUSY breaking

Stabilization

Conclusions

Setup

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 7 / 17

Setup I: Explicit Model

Introduction

Big Picture

Setup

Explicit Model EoM Solutions

SUSY breaking

Stabilization

Conclusions

Randall-Sundrum model on a $S^1/Z_2 \times Z_2$ orbifold $ds^2 = e^{-2\sigma(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2.$

Action is given by

 $S = \frac{M_5^3}{k} \int d^4x \int d^4\theta (\omega^{\dagger}\omega - \varphi^{\dagger}\varphi) + \int d^4x \int_0^{\ell} dy L_{hyp},$ where $\omega = e^{-k\ell} + \dots + \theta^2 F_{\omega}$ and $\varphi = 1 + \theta^2 F_{\varphi}.$ Hypermultiplet action is $L_{hyp} = \int d^4\theta e^{-2\sigma} (\Phi^{\dagger}\Phi + \tilde{\Phi}^{\dagger}\tilde{\Phi}) + \left[\int d^2\theta e^{-3\sigma} \left(\frac{1}{2}\tilde{\Phi}\overline{\partial}_y \Phi + c\sigma'\tilde{\Phi}\Phi\right) + \text{h.c.}\right] - \delta(y)U(\Phi, \tilde{\Phi}, F, \tilde{F})$ $+ \delta(y - \ell)\omega^3 \left[\int d^4\theta W(\Phi, \tilde{\Phi}) + \text{h.c.}\right]$

GMESTalk2.tex

Gauge Mediation from Emergent SUSY - 8 / 17

Setup II: EoM Solutions

Introduction

Big Picture

Setup

Explicit Model

EoM Solutions

SUSY breaking

Stabilization

Conclusions

General solution (for $0 < y < \ell$) is $F = F_0 e^{-(c-\frac{3}{2})\sigma}$ $\tilde{F} = \tilde{F}_0 \frac{\sigma'}{k} e^{(c+\frac{3}{2})\sigma}$ $\Phi = \Phi_0 e^{-(c-\frac{3}{2})\sigma} - \frac{\tilde{F}_0^{\dagger}}{(2c+1)k} e^{(c+\frac{5}{2})\sigma}$ $\tilde{\Phi} = \tilde{\Phi}_0 e^{(c+\frac{3}{2})\sigma} - \frac{F_0^{\dagger}}{(2c-1)k} e^{-(c-\frac{5}{2})\sigma}$

The prefactors are determined from the junction conditions.Digression: AdS-CFT dictionary

 $\dim(O_{\Phi,\tilde{\Phi}}) = 2 + |c \pm \frac{1}{2}|$

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 9 / 17

Big Picture

Setup

SUSY breaking

Mechanisms

Gauge Mediation

Stabilization

Conclusions

SUSY breaking

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 10 / 17

Big Picture

Setup

SUSY breaking

Mechanisms

Gauge Mediation

Stabilization

Conclusions

5-d gravity loop contribution is $m_{\text{gravity}} \sim \omega^2$. [Gregoire et al(hep-th/0411216)]

SUSY breaking I: Various Mechanisms

Effective 4-d Lagrangian that characterizes the soft SUSY breaking masses from the various mechanisms

$$L_{soft} = -V_{\text{eff},\omega} + \int d^4\theta \omega^{\dagger} \omega \left[1 + (1 + \Phi_{\text{IR}}^{\dagger} \Phi_{\text{IR}}) \right]$$
$$(Q^{\dagger}Q + X^{\dagger}X + \bar{X}^{\dagger}\bar{X}) + \int d^2\theta \omega^3 \Phi \bar{X}X + \text{h.c.}$$

For the models of interest, scale of anomaly mediation is $m_{\text{anomaly}} \sim \frac{F_{\omega}}{\omega} = \frac{1}{\omega} \frac{\partial V_{\text{eff},\omega}}{\partial \omega} \sim \Lambda_{\text{IR}} \omega^{d-5}$. [Luty & Sundrum(hep-th/0012158)]

 After canonical normalization, direct mediation contributes m²_{direct} ~ F[†]_{IR} F_{IR}. Generally, flavor non-diagonal. [Goh, Luty & SPN(hep-th/0309103)]

What about gauge mediation?

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 11 / 17

Big Picture

Setup

SUSY breaking

Mechanisms

Gauge Mediation

Stabilization

Conclusions

SUSY breaking II: Gauge Mediation

Mass matrix of the scalar messengers is completely specified. $m_{\text{messenger}}^{2} = \begin{pmatrix} \omega^{\dagger} \omega |\Phi_{\text{IR}}|^{2} + |F_{\text{IR}}|^{2} & \omega F_{\text{IR}} \\ \omega^{\dagger} F_{\text{IR}}^{\dagger} & \omega^{\dagger} \omega |\Phi_{\text{IR}}|^{2} + |F_{\text{IR}}|^{2} \end{pmatrix}$ Scale of gauge mediation is $m_{\text{gauge}} \sim \frac{F_{\text{IR}}}{\Phi_{\text{IR}}}$ subject to certain constraints.

For a particular class of theories, we have

$$m_{\rm soft} \sim \begin{cases} \frac{F_{\rm IR}}{\Phi_{\rm IR}} & \sim \Lambda_{\rm IR} \omega^{\frac{d-5}{3}} & gauge & \checkmark \Rightarrow d > 5 \\ F_{\rm IR} & \sim \Lambda_{\rm IR} \omega^{\frac{2(d-5)}{3}} & direct & subdom. \\ \frac{F_{\omega}}{\omega} & \sim \Lambda_{IR} \omega^{d-5} & anomaly & subdom. \\ & \sim \Lambda_{IR} \omega & gravity & subdom. \end{cases}$$

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 12 / 17

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials

Phenomenology

Conclusions

Stabilization

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 13 / 17

Stabilization I: Brane Potentials

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials Phenomenology

Conclusions

For gauge mediation to dominate, the following is required: (+,+) orbifold parity, d > 5 ($c < -\frac{5}{2}$) and the potentials $U = b(\Phi_{\rm UV} + \Phi_{\rm UV}^{\dagger}), \qquad W = a \Phi_{\rm IR}^3$

Effective potential is

wh

GMESTalk2.tex

$$V_{\text{eff}} = \frac{3b}{4} \Phi_{\text{IR}} \omega^{d-1} + \ldots = -A \omega^{4\frac{d-2}{3}} + \ldots$$

ere $A > 0$.

Gauge Mediation from Emergent SUSY – 14 / 17

Stabilization I: Brane Potentials

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials Phenomenology

Conclusions

For gauge mediation to dominate, the following is required: (+,+) orbifold parity, d > 5 ($c < -\frac{5}{2}$) and the potentials $U = b(\Phi_{\rm UV} + \Phi_{\rm UV}^{\dagger}), \qquad W = a \Phi_{\rm IR}^3$

Effective potential is

$$V_{\text{eff}} = \frac{3b}{4} \Phi_{\text{IR}} \omega^{d-1} + \ldots = -A \omega^{4\frac{d-2}{3}} + \ldots$$

where A > 0. Introduce $\Psi : (+, +)$ orbifold parity, c > 0 (good only for stabilization) and potentials

$$U = b' \Psi_{\rm UV}^2 + b'_2 F + {\rm h.c.}, \qquad W = a' \Psi_{\rm IR}^2$$

Hence for stabilization, d' $\gtrsim \frac{2d+5}{3}$.
 Checked SUSY breaking.

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 14 / 17

Stabilization I: Brane Potentials

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials Phenomenology

Conclusions

For gauge mediation to dominate, the following is required: (+,+) orbifold parity, d > 5 ($c < -\frac{5}{2}$) and the potentials $U = b(\Phi_{\rm UV} + \Phi_{\rm UV}^{\dagger}), \qquad W = a\Phi_{\rm IR}^3$

Effective potential is

$$V_{\text{eff}} = \frac{3b}{4} \Phi_{\text{IR}} \omega^{d-1} + \ldots = -A \omega^{4\frac{d-2}{3}} + \ldots$$

where A > 0. Introduce $\Psi : (+, +)$ orbifold parity, c > 0 (good only for stabilization) and potentials

$$U = b' \Psi_{\rm UV}^2 + b'_2 F + \text{h.c.}, \qquad W = a' \Psi_{\rm IR}^2$$

Hence for stabilization, d' $\gtrsim \frac{2d+5}{3}$.
 Checked SUSY breaking.

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 14 / 17

Stabilization II: Phenomenology

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials Phenomenology

Conclusions

Phenomenological Differences with conventional GMSB

- Heavy Gravitino
- Non-negligible FCNC
 - Presence of radion

Work In Progress.

🔺 . . .

GMESTalk2.tex

Gauge Mediation from Emergent SUSY – 15 / 17

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Final Word

Conclusions

 $\mathsf{GMESTalk2.tex}$

Gauge Mediation from Emergent SUSY – 16 / 17

Final Word

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Final Word

GMES is interesting as

- An Alternative to GMSB
 - No need for traditional DSB
 - Averts gravitino constraints
 - Different phenomenology
- Part of Susy w.o. Susy
 - No Susy flavor problem
 - Another class of realizations