Solving Pure Yang-Mills Theory in 2+1 Dimensions

Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060

with Rob Leigh and Djordje Minic

Motivation (Why is YM₍₂₊₁₎ interesting?)

Interesting in its own right

YM ₍₁₊₁₎	YM ₍₂₊₁₎	YM ₍₃₊₁₎
No propagating degrees of freedom; exactly solvable ('t Hooft '74)	Propagating degrees of freedom, nontrivial. Exactly solvable? (Polyakov '80)	Highly nontrivial; difficult

- A real physical context for YM₍₂₊₁₎
 - □ Mass gap of $YM_{(2+1)} \approx$ magnetic screening mass of $YM_{(3+1)}$ at high temperature
 - Possible applications in condensed matter physics (high-T_c superconductivity)

Preliminaries and Summary

- We work in the Hamiltonian formalism
- The new ingredient is provided by the computation of the new nontrivial form of the ground state wave-functional. This wavefunctional correctly interpolates between asymptotically free regime and low energy confining physics
- With this vacuum state it is possible to (quantitatively) demonstrate important observable features of the theory:
 - Signals of confinement: area law, string tension, mass gap
 - Compute the spectrum of glueball states
- Excellent agreement with available lattice data

$YM_{(2+1)}$ in the Hamiltonian Formalism

We consider (2+1)D SU(N) pure YM theory with the Hamiltonian

$$\mathcal{H}_{YM} \equiv T + V = \int \operatorname{Tr} \left(g_{YM}^2 E_i^2 + \frac{1}{g_{YM}^2} B^2 \right)$$

- We choose the temporal gauge $A_0 = 0$
- E_{i}^{a} is the momentum conjugate to A_{i}^{a} ; i=1,2, a=1,2,...,N²-1 • Quantize: $E_{i}^{a} \rightarrow -i \frac{\delta}{\delta A_{i}^{a}}$
- Time-independent gauge transformations preserve A₀=0 gauge condition and gauge fields A_i transform as

$$A_i \rightarrow gAg^{-1} - \partial_i gg^{-1}, \qquad g \in SU(N)$$

 Gauss' law implies that observables and physical states are gauge invariant

$YM_{(2+1)}$ in the Hamiltonian Formalism (cont'd.)

- YM₍₂₊₁₎ is superrenormalizable
- Coupling constant is dimensionful: $[g_{YM}^2] = mass$
- It is convenient to introduce new massive parameter

$$m = \frac{g_{YM}^2 N}{2\pi} \sim \text{'t Hooft coupling'}$$

- Regularization is needed:
 - We use Karabali, Kim and Nair formalism (hep-th/9705087, hep-th/9804132, hep-th/0007188) which can be summarized as: local gauge-invariant variables + covariant point-splitting regularization

Vacuum Wave-Functional

In general, for the vacuum wave-functional we may write

 $\Psi_0 = e^P$

- In principle, *P* can be any functional which is gauge invariant, as well as invariant under space-time symmetries ($J^{PC} = 0^{++}$)
- We want to solve Schrödinger equation to *quadratic order* in magnetic field *B*, therefore we take the most general *gauge invariant* ansatz which contains *all* terms quadratic in B

$$\Psi_0 = \exp\left(-\frac{1}{2g_{YM}^2m}\int tr\,B\,K\!\left(\frac{D^2}{4m^2}\right)B + \ldots\right)$$

 The Gaussian part of the vacuum wave functional contains a (non-trivial) kernel K which will be determined by the solution of Schrödinger equation

Vacuum Wave-Functional (cont'd.)

- Asymptotic behavior of the vacuum state:
 - In the UV we expect to recover the standard perturbative result

$$\Psi_0^{UV} \mapsto \exp\left(-\frac{1}{2g_{YM}^2}\int B^a \frac{1}{|p|}B^a\right)$$

$$K \to \frac{2m}{p} \quad \text{as} \quad p \to \infty$$

In the IR we expect

$$\Psi_0^{IR} \mapsto \exp\left(-\frac{1}{2g_{YM}^2m}\int \operatorname{Tr} B^2\right)$$
$$K \to 1 \quad \text{as} \quad p \to 0$$

Schrödinger Equation

The Schrödinger equation takes the form

$$\mathcal{H}_{YM}\Psi_0 = E_0\Psi_0 = \left[E_0 + \int tr \,B(\mathcal{R})B + \dots\right]\Psi_0$$

By careful computation we find the differential equation for the kernel K(L)

$$\mathcal{R} = -K(L) - \frac{L}{2} \frac{d}{dL} [K(L)] + LK(L)^2 + 1 = 0$$

This may be compared to U(1) theory without matter in which case we obtain an algebraic equation describing free photons

$$LK^2(L) + 1 = 0$$

$$K(L) = \pm \frac{1}{\sqrt{-L}} = \frac{2m}{p}$$

Vacuum Solution

 The differential equation for kernel is of Riccati type and, by a series of redefinitions, it can be recast as a Bessel equation.

$$K(L) = \frac{1}{\sqrt{L}} \frac{CJ_2(4\sqrt{L}) + Y_2(4\sqrt{L})}{CJ_1(4\sqrt{L}) + Y_1(4\sqrt{L})}$$

- The only normalizable wave functional is obtained for $C \rightarrow \infty$, which is also the only case that has both the correct UV behavior appropriate to asymptotic freedom as well as the correct IR behavior appropriate to confinement and mass gap!
- This solution is of the form

$$K(L) = \frac{1}{\sqrt{L}} \frac{J_2(4\sqrt{L})}{J_1(4\sqrt{L})}$$

String tension and correlators

We may now compute equal-time correlators as

$$\langle \mathcal{O}(x) \mathcal{O}(y) \rangle \sim \int [dA] |\Psi_0|^2 \mathcal{O}(x) \mathcal{O}(y)$$

- Because of the Gaussian nature of vacuum and asymptotic properties of the kernel K, in the IR this integral is equivalent to 2d Euclidean YM theory with 2d coupling $g_{2D}^2 \equiv mg_{YM}^2$
- This means, in particular, that large spatial Wilson loops obey area law with string tension

$$\sqrt{\sigma} \simeq \sqrt{\frac{\pi}{2}} m$$

• Also, elementary $\langle B^a(x) B^b(y) \rangle$ correlator is

$$\langle B^a(x) B^b(y) \rangle \sim \delta^{ab} K^{-1}(|x-y|)$$

Inverse Kernel

Using the standard Bessel function identities we may expand

$$\frac{J_1(u)}{J_2(u)} = \frac{4}{u} + 2u \sum_{n=1}^{\infty} \frac{1}{u^2 - \gamma_{2,n}^2}$$

where the $\gamma_{2,n}$ are the ordered zeros of $J_2(u)$.

• Inverse kernel is thus ($L \cong p^2/4m^2$)

$$K^{-1}(p) = 1 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\vec{p}^2}{\vec{p}^2 + M_n^2} \qquad \qquad M_n = \frac{\gamma_{2,n}m}{2}$$

M_n can be interpreted as constituents out of which glueball masses are constructed

$$M_1 = 2.568m$$
 $M_2 = 4.209m$ $M_3 = 5.810m$

Inverse Kernel (cont'd.)

- At asymptotically large spatial separations $|x - y| \to \infty$ inverse kernel takes the form

$$K^{-1}(|x-y|) \approx -\frac{1}{4\sqrt{2\pi|x-y|}} \sum_{n=1}^{\infty} (M_n)^{\frac{3}{2}} e^{-M_n|x-y|}$$

Glueball masses

- To find glueball states of given space-time quantum numbers, we compute equal-time correlators of invariant probe operators with appropriate J^{PC}
- For example, for 0⁺⁺ states we take $tr(B^2)$ as a probe operator and compute

$$\langle tr(B^2)_x tr(B^2)_y \rangle \sim K^{-2}(|x-y|)$$

• At large distance, we will find contributions of *single particle poles*

$$\langle tr(B^2)_x tr(B^2)_y \rangle \sim \frac{1}{|x-y|} \sum_{n,m=1}^{\infty} (M_n M_m)^{3/2} e^{-(M_n + M_m)|x-y|}$$

$$M_{0++} = M_1 + M_1 = 5.14m$$

$$M_{0++*} = M_1 + M_2 = 6.78m$$

$$M_{0++**} = M_1 + M_3 = 8.38m$$

$$M_{0++**} = M_1 + M_4 = 9.97m$$

0⁺⁺ Glueballs

- For 2+1 Yang-Mills, the "experimental data" consists of a number of lattice simulations, largely by M. Teper et al (hep-lat/9804008, hep-lat/0206027)
- The following table compares lattice results for 0⁺⁺ glueball states with analytic predictions. All masses are in units of the square root of string tension

State	Lattice, $N \to \infty$	Sugra	Our prediction	Diff, $\%$
0^{++}	4.065 ± 0.055	4.07(input)	4.098	0.8
0^{++*}	6.18 ± 0.13	7.02	5.407	12.5
0^{++**}	7.99 ± 0.22	9.92	6.716	16
0^{++***}	9.44 ± 0.38 5	12.80	7.994	15
0^{++***}		15.67	9.214	

0⁺⁺ Glueballs (cont'd.)

- There are no adjustable parameters in the theory; the ratios of $M_{0^{++}}$ to $\sqrt{\sigma}$ are *pure numbers*
- We are able to predict masses of 0⁺⁺ resonances, as well as the mass of the lowest lying member
- Results for excited state masses differ at the 10-15% level from lattice simulations. A possible explanation of such discrepancy is that those states have not been correctly identified on the lattice.
- The table below gives an updated comparison with relabeled lattice data

State	Lattice, $N \to \infty$	Our prediction	Diff, $\%$
0^{++}	4.065 ± 0.055	4.098	0.8
0^{++*}	6.18 ± 0.13	5.407	
0^{++**}	6.18 ± 0.13	6.716	
0^{++***}	7.99 ± 0.22	7.994	0.05
0^{++***}	9.44 ± 0.38	9.214	2.4

0⁻⁻ Glueballs

For 0⁻⁻ glueballs we compute

 $\left\langle \operatorname{Tr}\left(\bar{\partial}J\bar{\partial}J\bar{\partial}J\right)_{x}\operatorname{Tr}\left(\bar{\partial}J\bar{\partial}J\bar{\partial}J\right)_{y}\right\rangle \sim \frac{1}{64(2\pi|x-y|)^{\frac{3}{2}}}\sum_{n,m,\,k=1}^{\infty}(M_{n}M_{m}M_{k})^{3/2}e^{-(M_{n}+M_{m}+M_{k})|x-y|}$

- Masses of 0⁻⁻ resonances are the sum of three constituents : M_n+M_m+M_k
- The following table compares analytic predictions with available lattice data. All masses are in units of the $\sqrt{\sigma}$

State	Lattice, $N \to \infty$	Sugra	Our prediction	$\operatorname{Diff},\%$
0	5.91 ± 0.25	6.10	6.15	4
0^{*}	7.63 ± 0.37	9.34	7.46	2.3
0**	8.96 ± 0.65	12.37	8.73	2.5

Spin-2 States

- Similarly, analytic predictions for 2^{±+} states are compared with existing lattice data in the table above
- By parity doubling, masses of J⁺⁺ and J⁻⁺ resonances should be the same which is not the case with lattice values for 2^{++*} and 2^{-+*}. This indicates that apparent 7-14% discrepancy may be illusory.
- An updated comparison with relabeled lattice data is given in the table below

State	Lattice, $N \to \infty$	Our prediction	Difference, $\%$
2^{++}	6.88 ± 0.16	6.72	2.4
2^{-+}	6.89 ± 0.21	6.72	2.5
2^{++*}	8.62 ± 0.38	7.99	7.6
2^{-+*}	9.22 ± 0.32	7.99	14
2^{++**}	10.6 ± 0.7 6	9.26	13
2++***		10.52	

State	Lattice, $N \to \infty$	Our prediction	Difference, $\%$
2^{++}	6.88 ± 0.16	6.72	2.4
2^{++*}	8.62 ± 0.38	7.99	7.6
2^{++**}	9.22 ± 0.32	9.26	0.4
2++***	10.6 ± 0.7	10.52	0.8

Spin-2 States (cont'd.)

 Finally, the table below summarizes available lattice data for 2^{±-} states and compares it to analytic predictions

State	Lattice, $N \to \infty$	Our prediction	Difference, $\%$
2^{+-}	8.04 ± 0.50	8.76	8.6
$2^{}$	7.89 ± 0.35	8.76	10.4
2^{+-*}	9.97 ± 0.91	10.04	0.7
2^{*}	9.46 ± 0.66	10.04	5.6

Higher Spin States and Regge Trajectories

- It is possible to generalize our results for higher spin states
- For example, the masses of J⁺⁺ resonances with even J are

 $M_{J^{++*n}} = M_{J/2+1} + M_{J/2+1+n}$

■ Similarly, the masses of *J*⁻ resonances with even *J* are

$$M_{J^{--*n}} = M_1 + M_{J/2+1} + M_{J/2+1+n}$$

- It is possible to draw nearly linear Regge trajectories.
 - Graph on the right represents a Chew-Frautschi plot of large N glueball spectrum. Black boxes correspond to J⁺⁺ resonances with even spins up to J=12

Approximate Degeneracy of Mass Spectrum

- The Bessel function is essentially sinusoidal and so its zeros are approximately evenly spaced (better for large n)
- Thus, the predicted spectrum has approximate degeneracies, e.g.

$$M_{0^{++**}} = M_1 + M_3 = 8.38m$$

 $M_{2^{++}} = M_2 + M_2 = 8.42m$

 The spectrum is organized into "bands" concentrated around a given level (which are well separated)

Outlook

- Results are very encouraging but many open questions remain
- Extensions in (2+1)d:
 - Add matter meson spectrum
 - \square 1/N_c corrections
- Extension to (3+1)-dimensional YM
 - It is possible to generalize KKN (I. Bars) formalism to 3+1 dimensions:
 L. Freidel, hep-th/0604185.