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Motivation (Why is YM(2+1) interesting?)

Interesting in its own right

A real physical context for YM(2+1)

Mass gap of YM(2+1) ≈ magnetic screening mass of YM(3+1) at high 
temperature

Possible applications in condensed matter physics (high-Tc

superconductivity)

YM(1+1) YM(2+1) YM(3+1)

No propagating 
degrees of freedom; 
exactly solvable 
(‘t Hooft ’74)

Propagating degrees of freedom, 
nontrivial.
Exactly solvable? (Polyakov ’80)

Highly nontrivial;
difficult
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Preliminaries and Summary

We work in the Hamiltonian formalism

The new ingredient is provided by the computation of the new 
nontrivial form of the ground state wave-functional. This wave-
functional correctly interpolates between asymptotically free 
regime and low energy confining physics

With this vacuum state it is possible to (quantitatively) 
demonstrate important observable features of the theory:

Signals of confinement: area law, string tension, mass gap
Compute the spectrum of glueball states 

Excellent agreement with available lattice data
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YM(2+1) in the Hamiltonian Formalism

We consider (2+1)D SU(N) pure YM theory with the Hamiltonian

We choose the temporal gauge A0=0

Ea
i is the momentum conjugate to Aa

i ; i=1,2,  a=1,2,…,N2-1

Quantize: 

Time-independent gauge transformations preserve A0=0 gauge 
condition and gauge fields Ai transform as

Gauss’ law implies that observables and physical states are gauge 
invariant
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YM(2+1) in the Hamiltonian Formalism (cont’d.)

YM(2+1) is superrenormalizable

Coupling constant is dimensionful:

It is convenient to introduce new massive parameter

Regularization is needed:
We use Karabali, Kim and Nair formalism (hep-th/9705087, hep-
th/9804132, hep-th/0007188) which can be summarized as: local 
gauge-invariant variables + covariant point-splitting regularization
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Vacuum Wave-Functional

In general, for the vacuum wave-functional  we may write

In principle, P can be any functional which is gauge invariant, as 
well as invariant under space-time symmetries (JPC = 0++)

We want to solve Schrödinger equation to quadratic order in 
magnetic field B, therefore we take the most general gauge 
invariant ansatz which contains all terms quadratic in B

The Gaussian part of the vacuum wave functional contains a 
(non-trivial) kernel K which will be determined by the solution of 
Schrödinger equation
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Vacuum Wave-Functional (cont’d.)

Asymptotic behavior of the vacuum state:
In the UV we expect to recover the standard perturbative result

In the IR we expect
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Schrödinger Equation
The Schrödinger equation takes the form

By careful computation we find the differential equation for the
kernel K(L)

This may be compared to U(1) theory without matter in which case 
we obtain an algebraic equation describing free photons  
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Vacuum Solution

The differential equation for kernel is of Riccati type and, by a 
series of redefinitions, it can be recast as a Bessel equation.

The only normalizable wave functional is obtained for           , 
which is also the only case that has both the correct UV behavior 
appropriate to asymptotic freedom as well as the correct IR 
behavior appropriate to confinement and mass gap!

This solution is of the form

∞→C
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String tension and correlators

We may now compute equal-time correlators as

Because of the Gaussian nature of  vacuum and asymptotic 
properties of the kernel K, in the IR this integral is equivalent to 
2d Euclidean YM theory with 2d coupling

This means, in particular, that large spatial Wilson loops obey 
area law with string tension

Also, elementary                  correlator is 
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Inverse Kernel

Using the standard Bessel function identities we may expand 

where the γ2,n are the ordered zeros of J2(u).

Inverse kernel is thus (L @ p2/4m2)

Mn can be interpreted as constituents out of which glueball 
masses are constructed
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Inverse Kernel (cont’d.)

At asymptotically large spatial separations                 inverse 
kernel takes the form
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Glueball masses
To find glueball states of given space-time quantum numbers, we 
compute equal-time correlators of invariant probe operators with 
appropriate JPC

For example, for 0++ states we take            as a probe operator 
and compute

At large distance, we will find contributions of single particle poles
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0++ Glueballs

For 2+1 Yang-Mills, the “experimental data” consists of a number 
of lattice simulations, largely by M. Teper et al (hep-lat/9804008, 
hep-lat/0206027)

The following table compares lattice results for 0++ glueball states 
with analytic predictions. All masses are in units of the square
root of string tension
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0++ Glueballs (cont’d.)
There are no adjustable parameters in the theory; the ratios of 

M0++ to       are pure numbers

We are able to predict masses of 0++ resonances, as well as the 
mass of the lowest lying member

Results for excited state masses differ at the 10-15% level from 
lattice simulations. A possible explanation of such discrepancy is 
that those states have not been correctly identified on the lattice.

The table below gives an updated comparison with relabeled 
lattice data

σ
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0-- Glueballs

For 0–- glueballs we compute

Masses of 0-- resonances are the sum of three constituents : 
Mn+Mm+Mk

The following table compares analytic predictions with available
lattice data. All masses are in units of the    σ
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Spin–2 States

Similarly, analytic 
predictions for 2±+ states 
are compared with 
existing lattice data in 
the table above

By parity doubling, 
masses of J++ and J-+

resonances should be the 
same which is not the 
case with lattice values 
for 2++* and 2-+*. This 
indicates that apparent 
7-14% discrepancy may 
be illusory.

An updated comparison 
with relabeled lattice 
data is given in the table 
below
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Spin–2 States (cont’d.)

Finally, the table below summarizes available lattice data for 2±-

states and compares it to analytic predictions
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Higher Spin States and Regge Trajectories
It is possible to generalize our 
results for higher spin states

For example, the masses of J++

resonances with even J are

Similarly, the masses of J--

resonances with even J are

It is possible to draw nearly linear 
Regge trajectories.

Graph on the right represents a Chew-
Frautschi plot of large N glueball 
spectrum. Black boxes correspond to J++

resonances with even spins up to J=12
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Approximate Degeneracy of Mass Spectrum

The Bessel function is essentially 
sinusoidal and so its zeros are 
approximately evenly spaced (better 
for large n)

Thus, the predicted spectrum has 
approximate degeneracies, e.g.

The spectrum is organized into 
“bands” concentrated around a given 
level (which are well separated)
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Outlook
Results are very encouraging but many open questions remain

Extensions in (2+1)d:
Add matter – meson spectrum
1/Nc corrections

Extension to (3+1)-dimensional YM
It is possible to generalize KKN (I. Bars) formalism to 3+1 dimensions: 
L. Freidel, hep-th/0604185.
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