Solving Pure Yang-Mills Theory in 2+1 Dimensions

Aleksandr Yelnikov
Virginia Tech
based on
hep-th/0512200
hep-th/0604060
with Rob Leigh and Djordje Minic

Motivation (Why is $\mathrm{YM}_{(2+1)}$ interesting?)

- Interesting in its own right

YM $_{(1+1)}$	YM $_{(2+1)}$	
No propagating degrees of freedom; exactly solvable ('t Hooft '74)	Propagating degrees of freedom, nontrivial. Exactly solvable? (Polyakov '80)	Highly nontrivial; difficult

- A real physical context for $\mathrm{YM}_{(2+1)}$
- Mass gap of $\mathrm{YM}_{(2+1)} \approx$ magnetic screening mass of $\mathrm{YM}_{(3+1)}$ at high temperature
\square Possible applications in condensed matter physics (high- T_{c} superconductivity)

Preliminaries and Summary

- We work in the Hamiltonian formalism
- The new ingredient is provided by the computation of the new nontrivial form of the ground state wave-functional. This wavefunctional correctly interpolates between asymptotically free regime and low energy confining physics
- With this vacuum state it is possible to (quantitatively) demonstrate important observable features of the theory:
- Signals of confinement: area law, string tension, mass gap
- Compute the spectrum of glueball states
- Excellent agreement with available lattice data

$\mathrm{YM}_{(2+1)}$ in the Hamiltonian Formalism

- We consider (2+1)D SU(N) pure YM theory with the Hamiltonian

$$
\mathcal{H}_{Y M} \equiv T+V=\int \operatorname{Tr}\left(g_{Y M}^{2} E_{i}^{2}+\frac{1}{g_{Y M}^{2}} B^{2}\right)
$$

- We choose the temporal gauge $\mathrm{A}_{0}=0$
- E_{i}^{a} is the momentum conjugate to $A_{i}^{a} ; i=1,2, a=1,2, \ldots, N^{2}-1$
- Quantize: $E_{i}^{a} \rightarrow-i \frac{\delta}{\delta A_{i}^{a}}$
- Time-independent gauge transformations preserve $A_{0}=0$ gauge condition and gauge fields A_{i} transform as

$$
A_{i} \rightarrow g A g^{-1}-\partial_{i} g g^{-1}, \quad g \in S U(N)
$$

- Gauss' law implies that observables and physical states are gauge invariant

$\mathrm{YM}_{(2+1)}$ in the Hamiltonian Formalism (cont'd.)

- $\mathrm{YM}_{(2+1)}$ is superrenormalizable
- Coupling constant is dimensionful: $\left[g_{Y M}^{2}\right]=$ mass
- It is convenient to introduce new massive parameter

$$
m=\frac{g_{Y M}^{2} N}{2 \pi} \quad ~^{\prime} \mathrm{t} \text { Hooft coupling }
$$

- Regularization is needed:
- We use Karabali, Kim and Nair formalism (hep-th/9705087, hepth/9804132, hep-th/0007188) which can be summarized as: local gauge-invariant variables + covariant point-splitting regularization

Vacuum Wave-Functional

- In general, for the vacuum wave-functional we may write

$$
\Psi_{0}=e^{P}
$$

- In principle, P can be any functional which is gauge invariant, as well as invariant under space-time symmetries ($\mathrm{J}^{\mathrm{PC}}=0^{++}$)
- We want to solve Schrödinger equation to quadratic order in magnetic field B , therefore we take the most general gauge invariant ansatz which contains all terms quadratic in B

$$
\Psi_{0}=\exp \left(-\frac{1}{2 g_{Y M}^{2} m} \int \operatorname{tr} B K\left(\frac{D^{2}}{4 m^{2}}\right) B+\ldots\right)
$$

- The Gaussian part of the vacuum wave functional contains a (non-trivial) kernel K which will be determined by the solution of Schrödinger equation

Vacuum Wave-Functional (cont'd.)

- Asymptotic behavior of the vacuum state:
- In the UV we expect to recover the standard perturbative result

$$
\begin{gathered}
\Psi_{0}^{U V} \mapsto \exp \left(-\frac{1}{2 g_{Y M}^{2}} \int B^{a} \frac{1}{|p|} B^{a}\right) \\
K \rightarrow \frac{2 m}{p} \quad \text { as } \quad p \rightarrow \infty
\end{gathered}
$$

- In the IR we expect

$$
\begin{gathered}
\Psi_{0}^{I R} \mapsto \exp \left(-\frac{1}{2 g_{Y M}^{2} m} \int \operatorname{Tr} B^{2}\right) \\
K \rightarrow 1 \quad \text { as } \quad p \rightarrow 0
\end{gathered}
$$

Schrödinger Equation

- The Schrödinger equation takes the form

$$
\mathcal{H}_{Y M} \Psi_{0}=E_{0} \Psi_{0}=\left[E_{0}+\int \operatorname{tr} B(\mathcal{R}) B+\ldots\right] \Psi_{0}
$$

- By careful computation we find the differential equation for the kernel K(L)

$$
\mathcal{R}=-K(L)-\frac{L}{2} \frac{d}{d L}[K(L)]+L K(L)^{2}+1=0
$$

- This may be compared to $\mathrm{U}(1)$ theory without matter in which case we obtain an algebraic equation describing free photons

$$
\begin{gathered}
L K^{2}(L)+1=0 \\
K(L)= \pm \frac{1}{\sqrt{-L}}=\frac{2 m}{p}
\end{gathered}
$$

Vacuum Solution

- The differential equation for kernel is of Riccati type and, by a series of redefinitions, it can be recast as a Bessel equation.

$$
K(L)=\frac{1}{\sqrt{L}} \frac{C J_{2}(4 \sqrt{L})+Y_{2}(4 \sqrt{L})}{C J_{1}(4 \sqrt{L})+Y_{1}(4 \sqrt{L})}
$$

- The only normalizable wave functional is obtained for $C \rightarrow \infty$, which is also the only case that has both the correct UV behavior appropriate to asymptotic freedom as well as the correct IR behavior appropriate to confinement and mass gap!
- This solution is of the form

$$
K(L)=\frac{1}{\sqrt{L}} \frac{J_{2}(4 \sqrt{L})}{J_{1}(4 \sqrt{L})}
$$

String tension and correlators

- We may now compute equal-time correlators as

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle \sim \int[d A]\left|\Psi_{0}\right|^{2} \mathcal{O}(x) \mathcal{O}(y)
$$

- Because of the Gaussian nature of vacuum and asymptotic properties of the kernel K, in the IR this intearal is equivalent to 2d Euclidean YM theory with 2d coupling $g_{2 D}^{2} \equiv m g_{Y M}^{2}$
- This means, in particular, that large spatial Wilson loops obey area law with string tension

$$
\sqrt{\sigma} \simeq \sqrt{\frac{\pi}{2}} m
$$

- Also, elementary $\left\langle B^{a}(x) B^{b}(y)\right\rangle$ correlator is

$$
\left\langle B^{a}(x) B^{b}(y)\right\rangle \sim \delta^{a b} K^{-1}(|x-y|)
$$

Inverse Kernel

- Using the standard Bessel function identities we may expand

$$
\frac{J_{1}(u)}{J_{2}(u)}=\frac{4}{u}+2 u \sum_{n=1}^{\infty} \frac{1}{u^{2}-\gamma_{2, n}^{2}}
$$

where the $\gamma_{2, n}$ are the ordered zeros of $\mathrm{J}_{2}(\mathrm{u})$.

- Inverse kernel is thus ($\mathrm{L} \cong \mathrm{p}^{2} / 4 \mathrm{~m}^{2}$)

$$
K^{-1}(p)=1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{\vec{p}^{2}}{\vec{p}^{2}+M_{n}^{2}} \quad M_{n}=\frac{\gamma_{2, n} m}{2}
$$

- M_{n} can be interpreted as constituents out of which glueball masses are constructed

$$
M_{1}=2.568 m \quad M_{2}=4.209 m \quad M_{3}=5.810 m
$$

Inverse Kernel (cont'd.)

- At asymptotically large spatial separations $|x-y| \rightarrow \infty$ inverse kernel takes the form

$$
K^{-1}(|x-y|) \approx-\frac{1}{4 \sqrt{2 \pi|x-y|}} \sum_{n=1}^{\infty}\left(M_{n}\right)^{\frac{3}{2}} e^{-M_{n}|x-y|}
$$

Glueball masses

- To find glueball states of given space-time quantum numbers, we compute equal-time correlators of invariant probe operators with appropriate J ${ }^{\mathrm{PC}}$
- For example, for 0^{++}states we take $\operatorname{tr}\left(B^{2}\right)$ as a probe operator and compute

$$
\left\langle\operatorname{tr}\left(B^{2}\right)_{x} \operatorname{tr}\left(B^{2}\right)_{y}\right\rangle \sim K^{-2}(|x-y|)
$$

- At large distance, we will find contributions of single particle poles

$$
\begin{aligned}
\left\langle\operatorname{tr}\left(B^{2}\right)_{x} \operatorname{tr}\left(B^{2}\right)_{y}\right\rangle \sim \frac{1}{|x-y|} & \sum_{n, m=1}^{\infty}\left(M_{n} M_{m}\right)^{3 / 2} e^{-\left(M_{n}+M_{m}\right)|x-y|} \\
M_{0^{++}} & =M_{1}+M_{1}=5.14 m \\
M_{0^{++*}} & =M_{1}+M_{2}=6.78 m \\
M_{0^{++* *}} & =M_{1}+M_{3}=8.38 m \\
M_{0^{++* * *}} & =M_{1}+M_{4}=9.97 m
\end{aligned}
$$

0++ Glueballs

- For 2+1 Yang-Mills, the "experimental data" consists of a number of lattice simulations, largely by M. Teper et al (hep-lat/9804008, hep-lat/0206027)
- The following table compares lattice results for 0^{++}glueball states with analytic predictions. All masses are in units of the square root of string tension

State	Lattice, $N \rightarrow \infty$	Sugra	Our prediction	Diff, \%
0^{++}	4.065 ± 0.055	4.07 (input)	4.098	0.8
0^{++*}	6.18 ± 0.13	7.02	5.407	12.5
$0^{++* *}$	7.99 ± 0.22	9.92	6.716	16
$0^{++* * *}$	9.44 ± 0.38^{5}	12.80	7.994	15
$0^{++* * * *}$	--	15.67	9.214	--

0^{++}Glueballs (cont'd.)

- There are no adjustable parameters in the theory; the ratios of $\mathrm{M}_{0^{++}}$to $\sqrt{\sigma}$ are pure numbers
- We are able to predict masses of 0^{++}resonances, as well as the mass of the lowest lying member
- Results for excited state masses differ at the 10-15\% level from lattice simulations. A possible explanation of such discrepancy is that those states have not been correctly identified on the lattice.
- The table below gives an updated comparison with relabeled lattice data

State	Lattice, $N \rightarrow \infty$	Our prediction	Diff, $\%$
0^{++}	4.065 ± 0.055	4.098	0.8
0^{++*}	6.18 ± 0.13	5.407	--
$0^{++* *}$	6.18 ± 0.13	6.716	--
$0^{++* * *}$	7.99 ± 0.22	7.994	0.05
$0^{++* * * *}$	9.44 ± 0.38	9.214	2.4

0^{--}Glueballs

- For 0^{--}glueballs we compute
$\left\langle\operatorname{Tr}(\bar{\partial} J \bar{\partial} J \bar{\partial} J)_{x} \operatorname{Tr}(\bar{\partial} J \bar{\partial} J \bar{\partial} J)_{y}\right\rangle \sim \frac{1}{64(2 \pi|x-y|)^{\frac{3}{2}}} \sum_{n, m, k=1}^{\infty}\left(M_{n} M_{m} M_{k}\right)^{3 / 2} e^{-\left(M_{n}+M_{m}+M_{k}\right)|x-y|}$
- Masses of 0^{--}resonances are the sum of three constituents : $M_{n}+M_{m}+M_{k}$
- The following table compares analytic predictions with available lattice data. All masses are in units of the $\sqrt{\sigma}$

State	Lattice, $N \rightarrow \infty$	Sugra	Our prediction	Diff,\%
0^{--}	5.91 ± 0.25	6.10	6.15	4
0^{--*}	7.63 ± 0.37	9.34	7.46	2.3
$0^{--* *}$	8.96 ± 0.65	12.37	8.73	2.5

Spin-2 States

- Similarly, analytic predictions for $2^{ \pm+}$states are compared with existing lattice data in the table above
- By parity doubling, masses of J^{++}and J^{-+} resonances should be the same which is not the

State	Lattice, $N \rightarrow \infty$	Our prediction	Difference, $\%$
2^{++}	6.88 ± 0.16	6.72	2.4
2^{-+}	6.89 ± 0.21	6.72	2.5
2^{++*}	8.62 ± 0.38	7.99	7.6
2^{-+*}	9.22 ± 0.32	7.99	14
$2^{++* *}$	10.6 ± 0.7^{6}	9.26	13
$2^{++* * *}$	--	10.52	--

- An updated comparison with relabeled lattice data is given in the table below

State	Lattice, $N \rightarrow \infty$	Our prediction	Difference, $\%$
2^{++}	6.88 ± 0.16	6.72	2.4
2^{++*}	8.62 ± 0.38	7.99	7.6
$2^{++* *}$	9.22 ± 0.32	9.26	0.4
$2^{++* * *}$	10.6 ± 0.7	10.52	0.8

Spin-2 States (cont'd.)

- Finally, the table below summarizes available lattice data for $2^{ \pm-}$ states and compares it to analytic predictions

State	Lattice, $N \rightarrow \infty$	Our prediction	Difference, $\%$
2^{+-}	8.04 ± 0.50	8.76	8.6
2^{--}	7.89 ± 0.35	8.76	10.4
2^{+-*}	9.97 ± 0.91	10.04	0.7
2^{--*}	9.46 ± 0.66	10.04	5.6

Higher Spin States and Regge Trajectories

- It is possible to generalize our results for higher spin states
- For example, the masses of J^{++} resonances with even J are

$$
M_{J++* n}=M_{J / 2+1}+M_{J / 2+1+n}
$$

- Similarly, the masses of J resonances with even J are
$M_{J--* n}=M_{1}+M_{J / 2+1}+M_{J / 2+1+n}$
- It is possible to draw nearly linear Regge trajectories.
- Graph on the right represents a ChewFrautschi plot of large N glueball spectrum. Black boxes correspond to J^{++} resonances with even spins up to $\mathrm{J}=12$

Approximate Degeneracy of Mass Spectrum

- The Bessel function is essentially sinusoidal and so its zeros are approximately evenly spaced (better for large n)
- Thus, the predicted spectrum has approximate degeneracies, e.g.

$$
\begin{array}{ll}
M_{0^{++* *}} & =M_{1}+M_{3}=8.38 \mathrm{~m} \\
M_{2^{++}} & =M_{2}+M_{2}=8.42 \mathrm{~m}
\end{array}
$$

- The spectrum is organized into "bands" concentrated around a given level (which are well separated)

Outlook

- Results are very encouraging but many open questions remain
- Extensions in (2+1)d:
- Add matter - meson spectrum
- $1 / N_{c}$ corrections
- Extension to (3+1)-dimensional YM
- It is possible to generalize KKN (I. Bars) formalism to 3+1 dimensions:
L. Freidel, hep-th/0604185.

