Measurement of the W helicity in top quark decays at DØ

Christian Schmitt

Department of Physics, University of Wuppertal

PHENO 06 Symposium May 15th 2006

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Measurement of the W helicity in top quark decays at DØ

Outline

Introduction

- W helicity
- Sensitive variable

• Measurement of the W helicity

- Datasets and event selection
- Background reduction in the ℓ+jets channel
- Determination of cos θ^{*}
- Systematic uncertainties
- Result

Summary

W helicity in top quark decays decay angle in *W* rest frame Decay of top quarks

W helicity

Longitudinal fraction *f*₀

Left handed fraction *f_*

Right handed fraction f_+

Test of the SM Opportunity to look for new physics

$$f_0 \approx \frac{m_t^2}{2M_W^2 + m_t^2} = (70.1 \pm 1.6)\%$$

•
$$V - A$$
 interaction:

only on kinematics:

Longitudinal fraction depends

• *V* + *A* interaction:

► model

*f*_ suppressed by factors of order (*m*²_b/*m*²_l) *f*₊ ≈ 1 − *f*₀

W helicity in top quark decays decay angle in *W* rest frame Decay of top quarks

Measurements of the W helicity

- Longitudinal fraction *f*₀:
 - DØ (Run I):
 - CDF (Run I):
 - CDF (Run II, 200 fb⁻¹):

 $\begin{array}{l} f_0 = 0.56 \pm 0.31 \\ f_0 = 0.91 \pm 0.39 \\ f_0 = 0.74^{+0.22}_{-0.34} \end{array}$

- Right handed fraction f₊:
 - CDF (Run I):
 - DØ (Run II, 230 fb⁻¹):

 $\begin{array}{rcl} f_+ = -0.02 \pm 0.11 \\ f_+ = & 0.00 \pm 0.15 \end{array}$

- Indirect measurements:
 - Measurements of b → sγ have limited a possible V + A contribution in the top sector (assuming that the electroweak penguin contribution is dominant)

$$f_+ < \mathcal{O}(\%)$$

Introduction W helicity in top quark decays Measurement of the W helicity decay angle in W rest frame Result Decay of top quarks

Sensitive variable: decay angle in W rest frame

Each helicity state has different dependence on $\cos \theta^*$:

$$\omega(\cos\theta^{\star}) = \frac{3}{4}(1 - \cos^2\theta) \cdot f_0 + \frac{3}{8}(1 - \cos\theta)^2 \cdot f_- + \frac{3}{8}(1 + \cos\theta)^2 \cdot f_+$$

W helicity in top quark decays decay angle in *W* rest frame Decay of top quarks

Decay of top quarks

- Top quark decays to W boson and b quark: \approx 100%
- 3 different classes of top pair decays

- 6 jets (2b + 2 imes W ightarrow $qar{q}$)
- Iepton+jets
 - 4 jets (2b + $W \rightarrow q\bar{q}$)
 - 1 charged lepton + 1 neutrino ($W \rightarrow \ell \nu_{\ell}$)
- o dilepton
 - 2 jets (2b)
 - 2 charged leptons +
 - 2 neutrinos (2 \times *W* \rightarrow $\ell \nu_{\ell}$)

 Introduction
 Datasets and the DØ detector

 Measurement of the W helicity
 Event selection

 Result
 Determination of $\cos \theta^*$

Datasets

- Data
 - Integrated luminosity: 370 pb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV
 - Two different decay channels: *l*+jets and dilepton
- Monte Carlo generated with ALPGEN
 - Signal Monte Carlo
 - Top quark mass set to 175 GeV
 - *f*₀ fixed to 0.7
 - f₊ varied between 0.0 and 0.30 in steps of 0.05
 - Background Monte Carlo
 - W plus 4 jets (light as well as heavy flavor)
 - $Z/\gamma^{\star} \rightarrow \ell \bar{\ell}$ plus 2 jets
 - WW plus 2 jets
- Instrumental background taken from Data

Datasets and the DØ detector Event selection Determination of $\cos \theta^*$

Overview of the DØ detector

Christian Schmitt, Bergische Universität Wuppertal

Measurement of the W helicity in top quark decays at DØ

Datasets and the DØ detector Event selection Determination of $\cos \theta^*$

The tracking system

 Silicon vertex detector and fiber tracker inside magnetic field

Datasets and the DØ detector Event selection Determination of $\cos \theta^*$

Event selection

- Lepton+Jets channel
 - Charged lepton (e, μ)
 - *p*_T > 15 GeV, |η| < 1.1 (2.0)
 - Veto on other lepton with $p_T > 15 \text{ GeV}$
 - Isolated from jets
 - Missing transverse energy (∉_T) > 20 GeV
 - Jets
 - $p_T > 15 \text{ GeV}$ and $|\eta| < 2.5$
 - ≥ 4 jets
- Dilepton channel
 - 2 Charged leptons (*ee*, μμ, *e*μ)
 - Missing transverse energy (∉_T) > 20 GeV
 - ≥ 2 jets
 - Additional cuts:
 - ee, μμ: suppress Z background (invariant mass, Z fitter)

•
$$p_T^{\ell} = p_T^{\ell} + p_T^{j1} + p_T^{j2} > 140 \text{ GeV}$$

 Introduction
 Datasets and the DØ detector

 Measurement of the W helicity
 Event selection

 Result
 Determination of $\cos \theta^*$

Additional background reduction (lepton+jets)

- Further discrimination between signal and background desired (after preselection: $S/B \approx 0.25 1$)
- Use variables which exploit the difference in topology and flavor
 - Aplanarity and Sphericity (4 leading jets plus the lepton)
 - *H_T*: scalar sum of jet *p_T*
 - Centrality, defined as $C = \frac{H_T}{H_F}$
 - Minimal dijet mass in the event
 - K'_{Tmin} (scaled minimal distance between two jets)
 - χ^2 from the kinematic fit
 - Average *b*-tag probability of the two most probable *b*-jets (based on impact parameter of tracks inside the jet)
- Optimal set of variables and cut on discriminant for *e*+jets and μ +jets based on maximizing expected $S/\sqrt{S+B}$

Event selection

Discriminant \mathcal{D}

60

50

40

30

20

10

0

Number of events

Cut at D > 0.35

Christian Schmitt, Bergische Universität Wuppertal Measurement of the W helicity in top guark decays at DØ

$t\bar{t}$ reconstruction (lepton+jets channel)

Complete reconstruction of the event:

- Need to assign jets correctly
 - *b*-jets, jets from *W* boson, ISR/FSR
- Neutrino cannot be directly measured
 - Reconstruct p_x, p_y from transverse momentum imbalance
 - Infer p_z from $m_t = m_{\bar{t}}$ (quadratic equation)
- Impose the following constraints
 - Mass of *W* boson is known (80.4 GeV)
 - Both top quarks have equal mass ($m_t \approx 175 \text{ GeV}$)
- Feed these information into a kinematic fit
 - Obtain 4-vectors of particles for each jet permutation (12)
 - χ^2 from fit as figure of merit for each permutation

 Introduction
 Datasets and the DØ detec

 Measurement of the W helicity
 Event selection

 Result
 Determination of $\cos \theta^*$

Determination of $\cos \theta^*$ in dilepton events

- Dilepton events kinematically underconstrained due to presence of two neutrinos
 - \implies No kinematic fit possible
- Assume value for top quark mass ($m_t \approx 175 \text{ GeV}$)
 - \implies neutrino momenta can be determined (four-fold ambiguity)
- Additional two-fold ambiguity from pairing leptons with jets (only the two highest *p_T* jets are used)
- Determination of $\cos \theta^*$:
 - Take average of $\cos\theta^\star$ values computed by all possible solutions for each lepton
- Advantage: 30% improved sensitivity to f_+ compared to lepton p_T
- Larger dependence on jet energy calibration (still smaller than statistical uncertainty)

Datasets and the DØ detector Event selection Determination of $\cos \theta^*$

dilepton

$\cos \theta^{\star}$ distribution in data

lepton+jets

- both channels show good sensitivity
- deficit around $\cos \theta^{\star} \approx 0$ in the lepton+jets channel
 - goodness-of-fit: 2.1% for best-fit and 1.2% for standard model hypothesis (statistical only)
- Analysis on 1 fb⁻¹ dataset will provide more insight

Extraction of *f*₊ Systematic uncertainties Combined result

Extraction of f_+

 Create templates of cos θ* for different f₊ values (tt̄)

 Create templates for the background (left: W+jets, right: QCD)

Calculate a binwise Poisson likelihood as function of f_+ :

$$\mathcal{L}(f_+) = \prod_{i=1}^{N_{bins}} (\mu_i(f_+) + b_i)^{n_i} \cdot rac{\exp[-(\mu_i(f_+) + b_i)]}{n_i!}$$

Christian Schmitt, Bergische Universität Wuppertal Measurement of the W helicity in top quark decays at DØ

Extraction of *f*₊ Systematic uncertainties Combined result

Systematic uncertainties

Systematic uncertainties studied using ensemble tests

Source	lepton+jets	dilepton	combined
Top quark mass	0.033	0.070	0.042
Jet energy scale	0.023	0.039	0.027
Template statistics	0.030	0.024	0.024
$t\bar{t}$ model	0.010	0.018	0.012
Background model	0.014	0.007	0.011
Calibration	0.010	0.010	0.008
Total	0.054	0.087	0.058

Dominant systematic uncertainties can be reduced further

- Top quark mass varied by ± 5 GeV, while world average already improved to $\pm 2.3~\text{GeV}$
- Template statistics can be improved with more Data and MC

Christian Schmitt, Bergische Universität Wuppertal

Measurement of the W helicity in top quark decays at DØ

Introduction Ex Measurement of the W helicity Sy Besult Co

Extraction of *f*₊ Systematic uncertainties Combined result

Combined Result

Independent dataset ⇒ statistical combination easy

- weighted average of individual results
- Combined result excludes pure V + A interaction

Extraction of *f*₊ Systematic uncertainties Combined result

Summary and Outlook

- Decay angle in W restframe is sensitive to the fraction of right handed W bosons
- Two different decay channels: *l*+jets and dilepton
- Reconstruction of $\cos \theta^{\star}$ in both channels
- Combined result (*f*₀ fixed to 0.7):

 $f_{+} = 0.08 \pm 0.08(stat.) \pm 0.06(syst.)$

- Outlook:
 - Publication based on this dataset/analysis in preparation
 - Analysis with > 1 fb⁻¹
 - Measure f_0 and f_+ simultaneously

Measurement of the W helicity in top quark decays at DØ

Introduction Extraction of f₊ Measurement of the W helicity Systematic unce Result Combined result

Backup slides

Theoretical models that include a V+A contribution

• Left-right symmetric models:

 $SU(2)_L imes \frac{SU(2)_R}{} imes U_Y(1)$

Minimal SUSY SO(10) model

- Could explain the mixing angles in the neutrino sector
- Contains left-right symmetric unification group
- "Mirror fermions"
 - Each fermion in the SM has a mirror fermion $(m \sim 500 \text{ GeV})$ that has the same quantum number but opposite handedness

Topological discriminant

- Building the discriminant
 - Transformation of the input variables
 - Calculate logarithm of the ratio S/B
 - Fit this ratio with polynomials

• The discriminant is then defined as

$$\mathcal{D} = rac{\exp\left(\sum_{i} \left[\ln(\mathcal{S}/\mathcal{B})\right]_{ ext{fit}}^{i}
ight)}{\exp\left(\sum_{i} \left[\ln(\mathcal{S}/\mathcal{B})\right]_{ ext{fit}}^{i}
ight) + 1}$$

Signal Monte Carlo

- 7 dedicated Monte Carlo Samples (ALPGEN) with different values of f₊: f₊ = 0.00...0.30 in steps of 0.05
 - f₀ is fixed at the predicted value of 0.70
- Possible interference term between V A and V + A interaction negligible $\sim (m_b/m_t)^2$
 - All f_+ values can be generated by a linear combination of V - A and V + A
 - Interpolate all Monte Carlo samples to create V - A and V + A samples
- Increased precision on $\cos \theta^{\star}$ distribution

