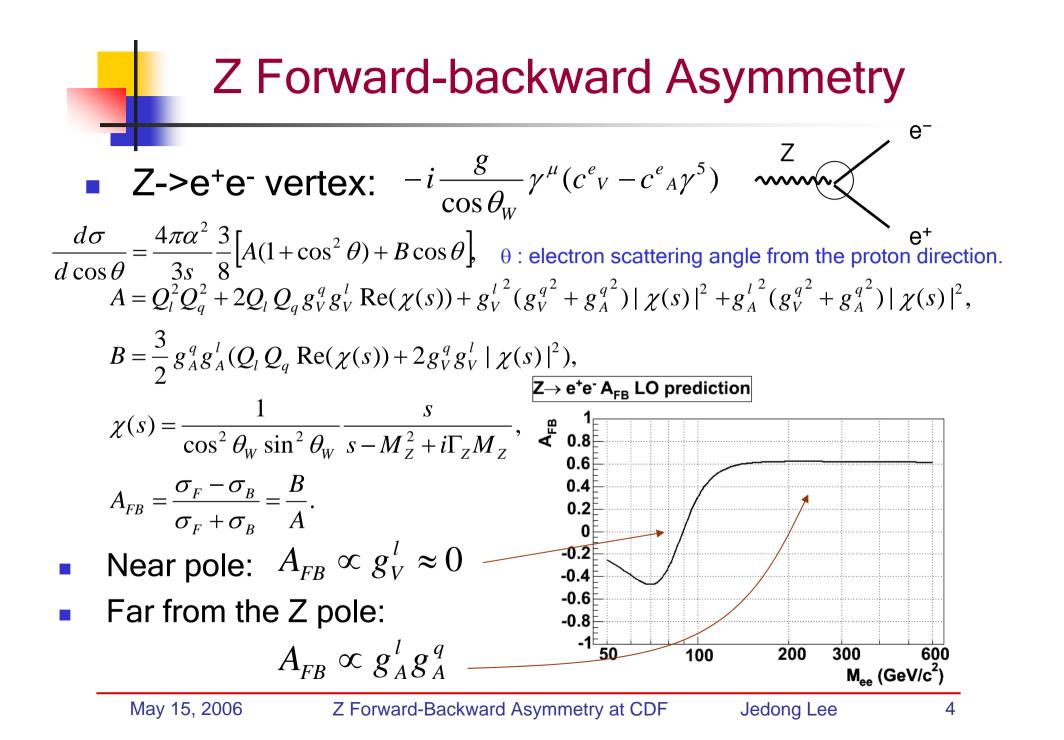


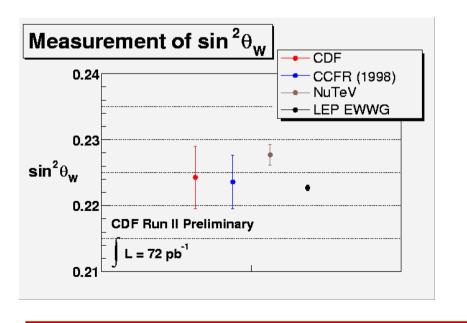
Jedong Lee University of Rochester

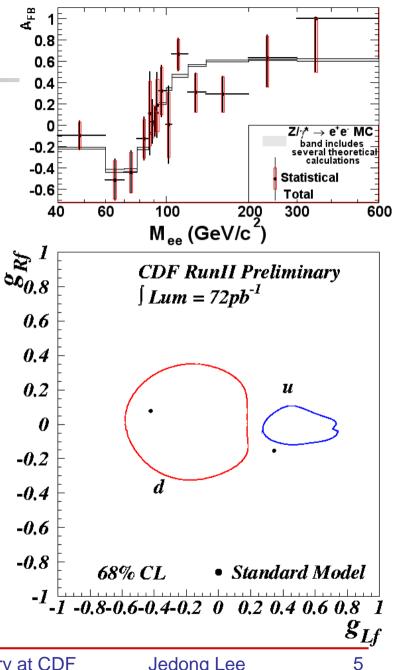
> May 15 2006 PHENO 2006

CDF at Tevatron


- Tevatron (pp @1.96 TeV)
 - 1985 now
 - Discovered top quark
 - Recorded 1 fb⁻¹ (Jan 2006)
 - SM precision measurement
 - Search for new physics

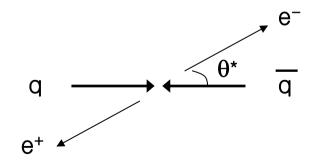
Jedong Lee

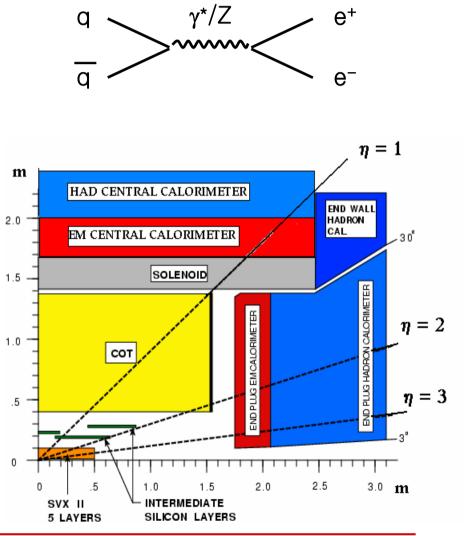

Electroweak Theory of SM


- Successfully tested so far.
- Problems:
 - Electroweak symmetry breaking mechanism.
 - Higgs may be the answer.
 - Loop correction to the Higgs mass requires unnatural fine-tuning.
 - Implication for a new physics at ~1 TeV.
- Precision measurements.
 - Confirm the SM or look for deviation.
- Other efforts:
 - Direct search for the Higgs.
 - Direct search for new gauge bosons.

Previous Result

- CDF Run II data with 72 pb⁻¹, Phys. Rev. D71, 052002 (2005).
- Detector effect is unfolded.
- Consistent with SM (χ^2 /ndof = 15.7/15)
- Coupling constants and $\sin^2\theta_w$ were also measured.



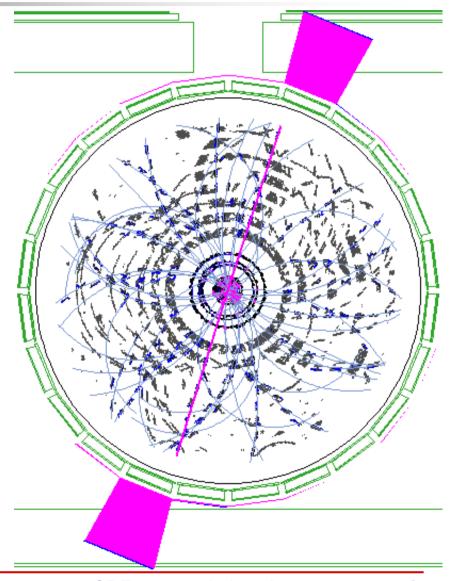

Electron Reconstruction

Di-electron Final State

- Covered up to $|\eta| < 3.0$
- Clean signal, low background.
 - Well isolated high-pt electrons.
 - SM background (Drell-Yan) is well understood.
- Di-electron invariant mass
 - Search for new resonance Z'.
- Angular distribution θ^*
 - Probe V-A nature of weak interaction.
 - Search for Z'.

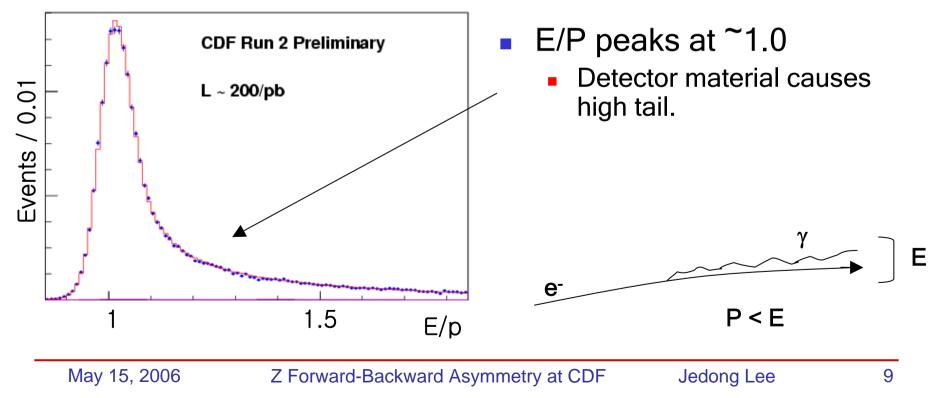
May 15, 2006

Jedong Lee


Electron Reconstruction at CDF

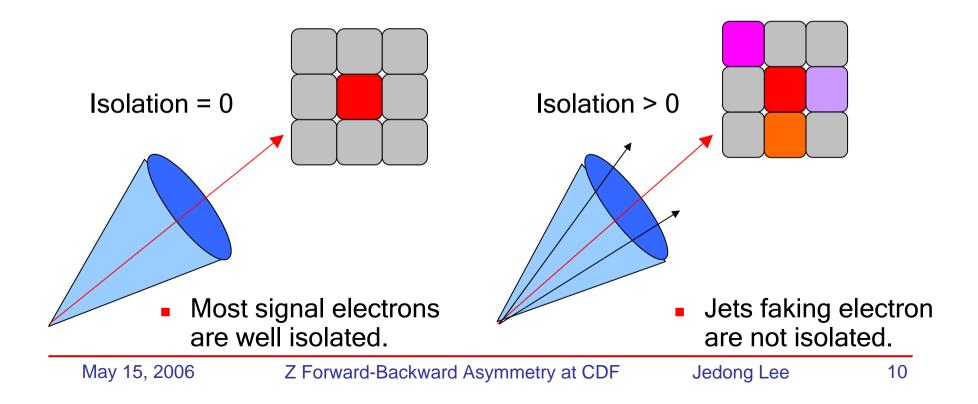
- Electromagnetic Calorimeter
 - Towers of lead/scintillator layers.
 - Measure the energy deposition of the shower.

 $\Delta E / E = 1.5\% \oplus 13.5\% / \sqrt{E}$


- Central Outer Tracker
 - Argon-ethane wire chamber in 1.4 T magnetic field.
 - Momentum is measured from the track curvature.

 $\Delta P_T / P_T = 0.1\% P_T [GeV / c]^{-1}$

Electron Reconstruction (cont'd)

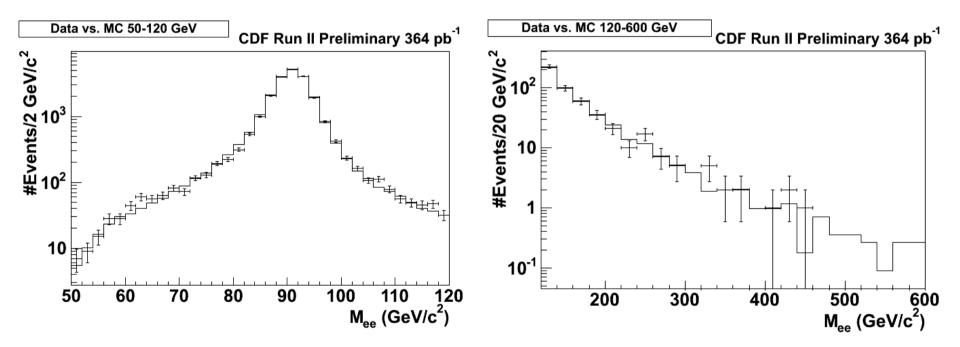

- Reconstruction Algorithm
 - Seeded by EM cluster in calorimeter.
 - Track must match the position of cluster.
 - Momentum (P) must match the energy (E).
 - Cut on E/P.

Electron Reconstruction (cont'd)

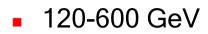
• Isolation =
$$\frac{E^{total} - E^{cluster}}{E^{total}}$$

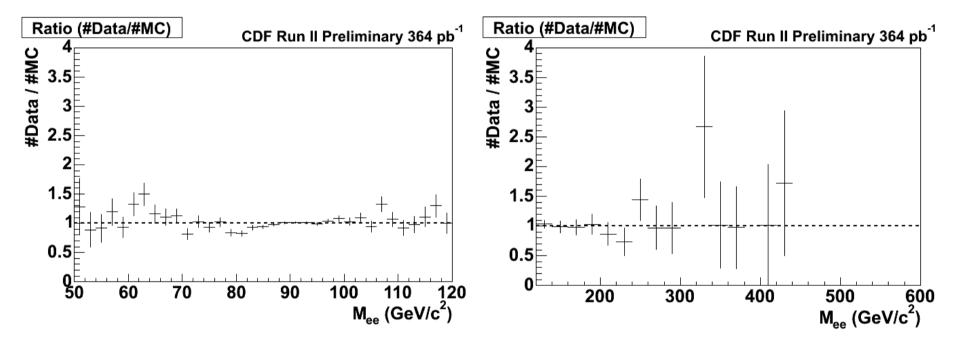
- E^{total} = Energy in the EM calorimeter in the cone of $\Delta r=0.4$.
- E^{cluster} = Energy of the electron cluster.

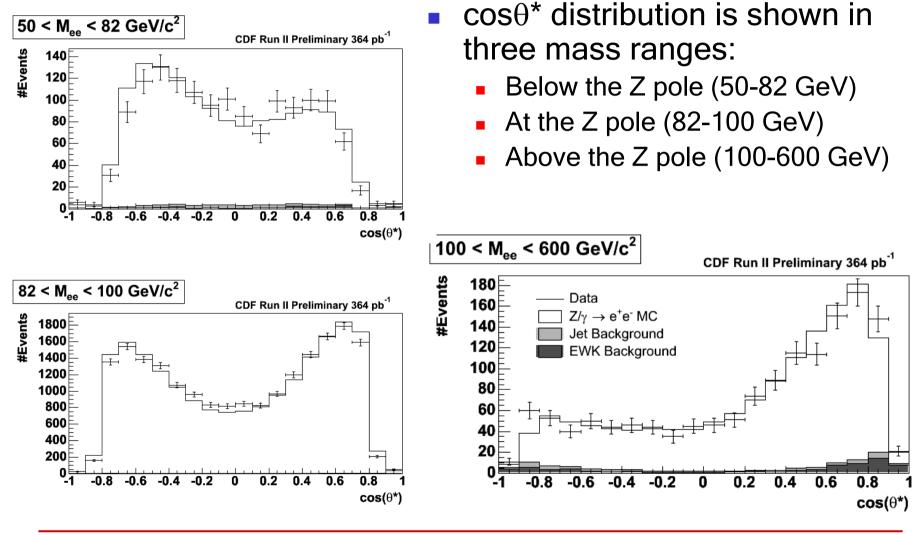
Event Selection


- Kinematic cuts
 - |η| < 3
 - E_T > 25 GeV
 - P_T > 15 GeV
- Electron quality cuts (central and forward region)
 - Ratio of hadronic energy to electromagnetic energy.
 - Isolation.
 - Shower shape to be consistent with what we expect for electrons.
- Track quality cuts in the central region ($|\eta| < 1$)
 - E/p < 2.5 + 0.015 * E_T.
 - Track shower position matching.

11

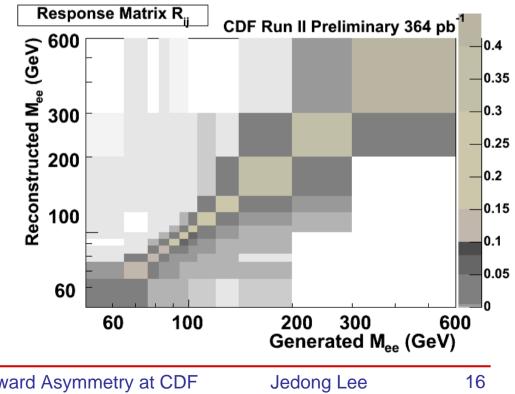

- Mass shape agrees well between data and MC.
 - 50-120 GeV


120-600 GeV



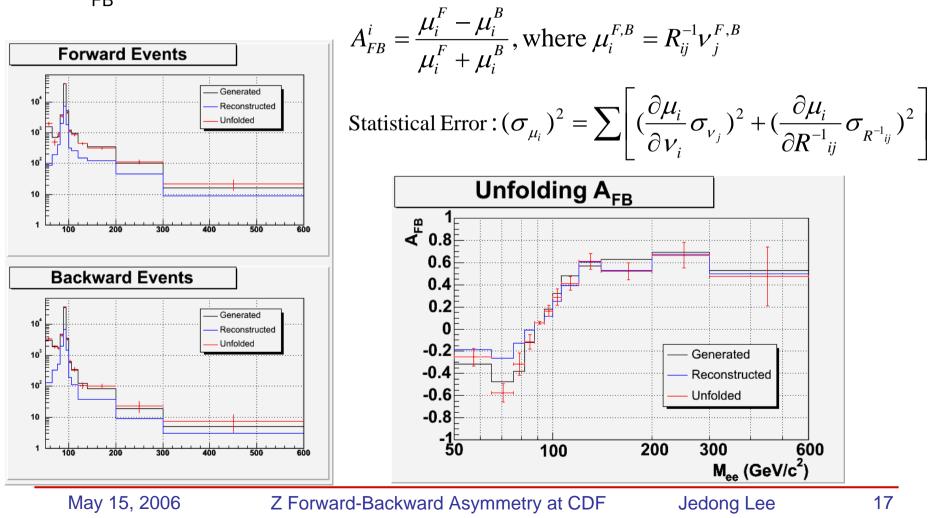
50-120 GeV

cosθ* Data vs. MC

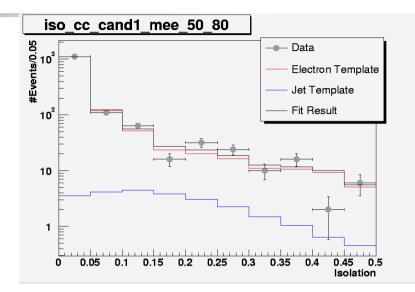


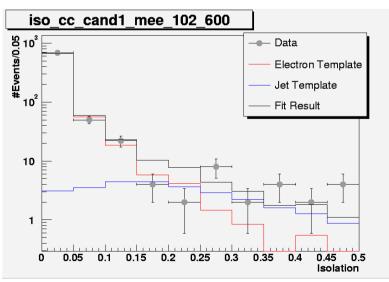
14

Extracting Z Forward-backward Asymmetry


Matrix Inversion

- Detector effect distorts M_{ee} and $\cos\theta^*$.
- Unfolding the effect with matrix inversion.
 - $R_{ii} = P(observed in bin i | true value in bin j).$
- $v = R \mu$.
 - μ : true histogram.
 - v: expected number of observation.
- Unfolding:
 - $\mu = R^{-1} v$.
- With BG: $\mu = R^{-1}(\nu - \beta).$


Unfolding; A MC Example

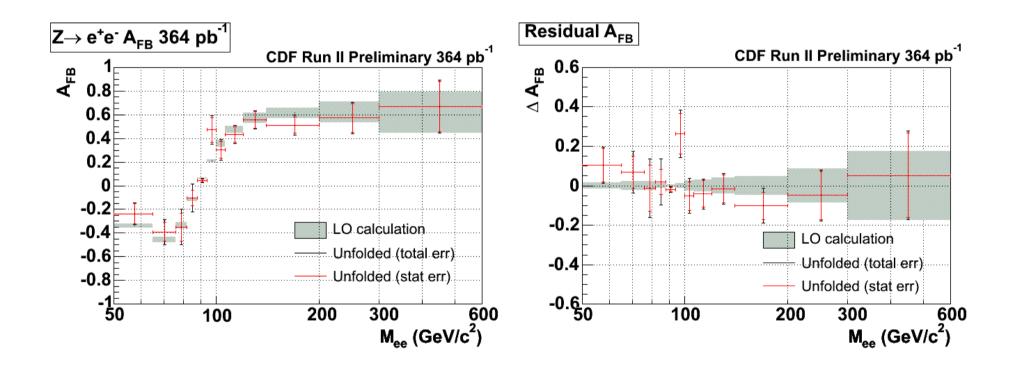

 Forward and backward events are unfolded separately and then the A_{FB} is calculated.

Background Estimation

- Jet fake background is estimated by fitting the isolation distribution.
- Electron template :
 - Data at the Z pole with tight cuts.
- Jet template :
 - Jet sample is selected from the EM calorimeter triggered sample by removing W and Z events.

Background Estimation (cont'd)

- Electroweak backgrounds are estimated from Monte Carlo simulations.
- Summary: (CDF Run II Preliminary)


	CC	СР	Total	uncertainty
Data	9455	13455	22910	
Jet Fake	10.6	128	138.6	21.6
W->ev+γ/jets	3.7	70.5	74.3	6.1
WW-> II_{VV}	5.9	6.5	12.4	0.6
WZ (Z->ee)	5.6	6.4	12.0	0.6
ttbar	3.2	1.9	5.1	0.3

Systematic Uncertainties

- Five sources:
 - Simulation of Detector Material
 - Changes the response matrix.
 - The largest effect.
 - Energy Scale and Resolution
 - Estimated from the Z sample at the pole.
 - Uncertainty in the Background Estimation
 - Limited Statistics in the Response Matrix
 - PDF Uncertainty
 - Estimated from 40 CTEQ6M error PDF sets.
 - The smallest effect.
- Statistical error dominates, except for around the Z pole.

• Consistent with SM (χ^2 /ndof = 10.2 / 12)

Result

Data Unfolded (table)

Mass (GeV)			RAW	Unfolded				
	#Forward	#BG Forward	#Backward	#BG Backward	A _{FB} (bg subtracted)	#Forward	#Backward	A _{FB}
50-65	97	9.6	120	7.6	-0.125	1875	3036	-0.236
65-76	207	15.8	284	12.7	-0.173	704	1603	-0.389
76-82	330	9.5	394	7.3	-0.094	486	1006	-0.348
82-88	1791	8.9	1817	7.5	-0.008	3153	3871	-0.102
88-94	6935	12.6	6295	10.1	0.048	39087	35762	0.044
94-100	1853	8.3	1348	6.8	0.158	3229	1160	0.471
100-106	333	8.5	169	6.0	0.331	1215	649	0.303
106-120	288	18.6	130	13.3	0.395	843	334	0.432
120-140	166	14.9	58	11.9	0.532	453	129	0.555
140-200	140	22.7	53	14.7	0.508	300	97	0.512
200-300	45	7.5	15	4.1	0.550	91	24	0.571
300-600	10	0.8	3	0.7	0.600	21	4	0.668

A_{FB} Uncertainty Summary

Mass (GeV)	A _{FB} (Data)	Stat.	Energy scale	Energy Resol.	PDF	BG	Response Matrix	Total Syst.	Total Uncert.
50-65	-0.236	0.085	0.009	0.020	0.003	0.018	0.015	0.036	0.092
65-76	-0.389	0.081	0.010	0.006	0.002	0.016	0.026	0.068	0.106
76-82	-0.348	0.117	0.017	0.047	0.001	0.008	0.065	0.092	0.149
82-88	-0.102	0.064	0.030	0.063	0.003	0.002	0.023	0.096	0.116
88-94	0.044	0.011	0.002	0.005	0.001	0.000	0.002	0.010	0.015
94-100	0.471	0.103	0.028	0.033	0.002	0.001	0.030	0.064	0.121
100-106	0.303	0.073	0.018	0.014	0.001	0.005	0.028	0.049	0.088
106-120	0.432	0.067	0.011	0.007	0.000	0.012	0.016	0.035	0.076
120-140	0.555	0.070	0.005	0.015	0.000	0.018	0.011	0.032	0.077
140-200	0.512	0.069	0.004	0.009	0.000	0.030	0.011	0.053	0.087
200-300	0.571	0.122	0.006	0.016	0.001	0.030	0.019	0.045	0.130
300-600	0.668	0.214	0.000	0.034	0.001	0.012	0.028	0.067	0.224

- A_{FB} is measured with 364 pb⁻¹ CDF Run II data.
 - Good agreement with SM (χ^2 /ndof = 10.2/12)
- Will be updated with ~1 fb⁻¹ data.
- Coupling constants will be updated.