Measurements of the W Helicity in Top Decays at CDF

Pheno 2006 - 05/15/2006

On behalf of the CDF collaboration

- Motivation
- W Helicity in top decays
- Analysis methods
- Results

Motivation

♦ 1995: Top quark discovery

◆ 2006: Top mass known with a precision of about 1.3% (2.4% Run I)

Open question: Does the discovered top quark have all properties of the SM top ?

- Production mechanism
- Charge, lifetime, spin
- ♦ Decay: branching ratios, couplings, W helicity

This talk: New CDF W helicity measurements in top decays

Top Production at the Tevatron

Top pair production $q \qquad t \\ g \qquad g \\ \overline{q} \sim 85\%$

Dominant process:

- ♦ Dilepton channel: $\ell_1 \nu_1 + \ell_2 \nu_2 + b\bar{b}$ BR ~ 5%, moderate background
- ♦ Lepton+Jets channel: $\ell \nu + q_1 \bar{q}_2 + b\bar{b}$ BR ~ 30%, moderate background
- ♦ All hadronic: $q_1\bar{q}_2 + q_3\bar{q}_4 + b\bar{b}$ BR ~ 46%, huge background

W Helicity in Top Decays

Right-handed: $F_+ = 0$ (SM)

Pheno 2006 Madison, 05/15/2006

Left-handed: $F_{-} = 0.3$ (SM)

♦ $\tau_t < \tau_{QCD}$: spin information of t quark preserved

Study of V-A structure of weak interaction:

V-A: $F_0 = 0.7$, $F_- = 0.3$ $F_+ =$ V+A: $F_0 = 0.7$, $F_+ = 0.3$ $0.3 \cdot f_{V+A}$ SM: $f_{V-A} = 1$, $f_{V+A} = 0$ $(F_0 = 0.7)$

Deviations from SM values would indicate new physics

W Helicity angle θ^*

Look at decay $t \rightarrow bW^+ \rightarrow b\ell^+\nu$ ν : always left-handed $(m_{\nu} = 0)$ $\Rightarrow \ell^+$: always right-handed

 θ^* : $\angle \ell (e, \mu)$ in W rest frame with respect to neg. direction of t in W rest frame

Pheno 2006 Madison, 05/15/2006

$\cos \theta^*$ Distr. for Different W Helicities

Pheno 2006 Madison, 05/15/2006

Sensitive Variables

Transverse momentum: p_T^ℓ

 Applicable for Dilepton and Lepton+Jets channel
 No ambiguities

Invariant mass: $M^2_{\ell b}$

- Applicable for Dilepton and Lepton+Jets channel
- ♦ Use ℓ and *b*-jet four-vectors
- ♦ Good separation power

Decay angle: $\cos \theta^*$

- Applicable for Lepton+Jets
- \diamond Use t, W and ℓ four-vectors
- \diamond Full rec. of $t\bar{t}$ kinematics
- Good separation power

Pheno 2006 Madison, 05/15/2006

Run I: p_T^{ℓ} , M_{lb}^2 Early Run II: p_T^{ℓ} , $M_{\ell b}^2$ New Run II results: $\cos \theta^*$, $M_{\ell b}^2$

Overview of W Helicity Analyses at CDF

Period	Sensitive variable	Meas. quantity	Decay channel	N_{jets}	$\mathcal{L}\left[pb^{-1} ight]$
Run I	p_T^ℓ	F_{0}, F_{+}	Lepton+Jets	≥ 3	106
	-		Dilepton	≥ 2	106
	$M^2_{\ell b}$	f_{V+A}	Lepton+Jets	≥ 3	109
	~0		Dilepton	≥ 2	109
Comb.: $F_+ = -0.02 \pm 0.11; \ p_T^\ell: \ F_0 = 0.91 \pm 0.39$					
Early	p_T^ℓ	F_{0}, F_{+}	Lepton+Jets	≥ 3	162
Run [®] II	- 1	- /	Dilepton	≥ 2	193
	$rac{2M_{\ell b}^2}{m_{\star}^2-M_{W}^2}-1$	F_0, F_+	Lepton+Jets	≥ 3	162
	$\stackrel{\scriptscriptstyle \star}{pprox} \cos heta^*$				
Comb.: $F_0 = 0.74^{+0.22}_{-0.34}$, $F_+ = 0.00^{+0.20}_{-0.19}$					
Run II	$\cos heta^*$	F_{0}, F_{+}	Lepton+Jets	≥ 4	320
(new)	$M^2_{ ho_B}$	f_{V+A}	Lepton+Jets	≥ 3	695
	20		Dilepton	≥ 2	750

Pheno 2006 Madison, 05/15/2006

Event Selection

 $\circ p_T^{\ell_{1,2}} > 20 \text{ GeV}/c, \not \!\!\!E_T > 25 \text{ GeV} \\ \circ \text{Opposite charged leptons} \\ \circ N_{\text{jets}} \ge 2 \ (E_T > 15 \text{ GeV}, |\eta| < 2.5) \\ \circ H_T > 200 \text{ GeV} \text{ (tot. trans. energy)}$

Background Estimates

- Di-boson, single top are extracted from Monte Carlo's
- ♦ Mistags, QCD-BG estimated from data, W + jets from data & MC
 Pheno 2006 Madison, 05/15/2006

Dilepton

♦ MC: WW, WZ, $Z → \tau\tau$ (DY) ♦ Z → ee, $\mu\mu$ (DY), fake leptons (W + jets) estimated from data

New Method: $\cos \theta^*$

- ♦ Selection criteria of best possible combination:
 - \diamond Choose always smaller $|p_{z,\nu}|$ solution
 - \diamond Constraints on $m_{W \rightarrow jj}$ and $m_{t \rightarrow b\ell\nu} m_{t \rightarrow bjj}$
 - $\diamond b$ likeness of *b*-jet candidates
 - \diamond Constraint on the sum of the rec. E_T of top quarks (should be equal to E_T of event in LO)

Pheno 2006 Madison, 05/15/2006

$\cos \theta^*$ Method - Result

Pheno 2006 Madison, 05/15/2006

J. Wagner, University of Karlsruhe

<u>1.5</u>

New M_{lb}^2 Analysis with $700\,{ m pb}^{-1}$

Pheno 2006 Madison, 05/15/2006

Signal templates:

Extracted from Monte Carlo (ALPGEN, f_{V-A} / f_{V+A} switch)

Data samples: Lepton+Jets:

1 *b*-tag: 1 hyp. \rightarrow 1D histogram 2 *b*-tags: 2 hyp. \rightarrow 2D histogram **Dileptons:** 4 hyp. \rightarrow 2 solutions in 2D histogram

Combined result: $f_{V+A} = -0.06 \pm 0.24$ $f_{V+A} < 0.29 @ 95$ C.L.

 $F_+=-0.02\pm0.08$ with $F_0=0.7$

Well consistent with SM

Summary and Outlook

Measurements of the W helicity in top decays at CDF:

- ♦ New method: full reconstr. of $\cos \theta^*$ ($\mathcal{L} = 320 \text{ pb}^{-1}$)
- $\diamond M_{lb}^2$ analysis with $\mathcal{L} = 700 \text{ pb}^{-1}$
- \Rightarrow Measured W helicities are well consistent with SM:

$$egin{aligned} F_+ &= -0.02 \pm 0.11 \, ({\sf Run}\;{\sf I}) \; o \; F_+ &= -0.02 \pm 0.08 \, ({\sf today}) \ F_0 &= 0.91 \pm 0.31 \, ({\sf Run}\;{\sf I}) \; o \; F_0 &= 0.85^{+0.16}_{-0.23} \, ({\cal L} = 320 \; {\sf pb}^{-1}) \end{aligned}$$

Entering interesting regime:

- ♦ Will the agreement stay with increasing luminosity?
- \diamond What is the result for a simultaneous fit of F_0 and F_+ ?

Pheno 2006 Madison, 05/15/2006