PREDICTING SIGNAL SIGNIFICANCES AT THE LHC

Tilman Plehn

MPI München & University of Edinburgh

- Why we would like to do that
- How we can do it
- What it gives for WBF H $\rightarrow \mu\mu$

in collaboration with Kyle Cranmer

THE PROBLEM WITH LHC SEARCHES: 1

Haven't we all had this problem?

- BSM model with crazy new particle
- → extraction from backgrounds at LHC [all LHC physics is statistics]
- → parton-level signal/background analysis [all of the U.S. can do that now]
- → cuts analysis an art, not a science
- → experimentalist reluctant to invest time [no trust because they know us...]
- → yes: neural net with hugely improved significance [good papers]
 yes: parton level analysis proven completely wrong [most papers]
 no: idea lost forever

What we would like to do

- (1) predict significance which can be obtained
- (2) check if experimental analysis is optimal
- ⇒ emulate the perfect experimentalist on a laptop [to take him home or to workshops]

THE PROBLEM WITH LHC SEARCHES: 2

An example from real life [TP, Rainwater, Zeppenfeld vs. Cranmer, Mellado, Quayle, Wu]

- WBF H $\rightarrow au au$ in Standard Model [and MSSM]
- cut analysis promising, experimentalists convinced
- neural net even better with LEP-type events weighting
- new Higgs discovery channel
- ⇒ could we have predicted this outcome?
 - ► Significance for 30 fb⁻¹:

Higgs Mass	Cut Analysis(Pois.)	Cut on NN	NN Sig. w/cut	NN Sig. w/LR
115	2.95	0.89	3.71	4.68
120	3.09	0.93	3.97	4.88
125	3.06	0.92	3.93	4.75
130	2.72	0.94	3.70	4.49
135	2.56	0.96	3.36	4.02
140	1.86	0.97	2.85	3.38

- ▶ Improvement of ~30% from Neural Nets
- ▶ Improvement of ~60% with Likelihood Ratio

[B. Quayle, ATLAS Higgs meeting, 2003]

LIKELIHOOD RATIO: 1

Likelihood ratio and maximum significance

- Neyman—Pearson lemma: likelihood ratio most powerful estimator
 [assuming signal true: lowest probability to mistake signal for background fluctuation (type-II error)]
- combined likelihood for N-event Poisson statistics [independent channels]

$$\begin{split} \mathcal{L}_b &= \frac{e^{-b} \ b^N}{N!} \qquad \qquad \mathcal{L}_{s+b} = \frac{e^{-(s+b)} \ (s+b)^N}{N!} \\ q &= \log \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = -s + N \ \log \left(1 + \frac{s}{b}\right) \longrightarrow -\sum_j s_j + \sum_j N_j \ \log \left(1 + \frac{s_j}{b_j}\right) \end{split}$$

 $\to \ \ \text{integration over entire phase space replacing s}, b \to |\mathcal{M}_{s,b}|^2 \quad \text{[LEP-Higgs inspired]}$

$$q(\vec{r}) = -\sigma_s \mathcal{L} + \log \left(1 + \frac{|\mathcal{M}_s(\vec{r})|^2 / \sigma_s}{|\mathcal{M}_b(\vec{r})|^2 / \sigma_b} \right)$$

- \rightarrow extraction of probability distribution function via Fourier transform: $\rho_{s,b}(q)$
- ightarrow mathematically optimal significance $CL_b(q) = \int_q^\infty dq' \rho_b(q')$ [5 σ is $CL_b = 2.85 \, 10^{-7}$]

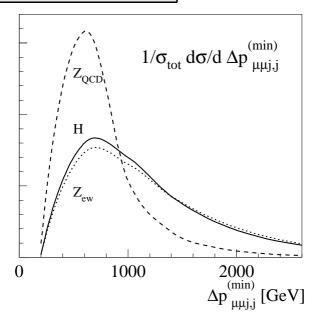
LIKELIHOOD RATIO: 2

Irreducible + unsmeared and beyond

irreducible & unsmeared: signal and background phase space identical

$$\sigma_{\text{tot}} = \int dPS M_{PS} d\sigma_{PS} = \int d\vec{r} M(\vec{r}) d\sigma(\vec{r})$$

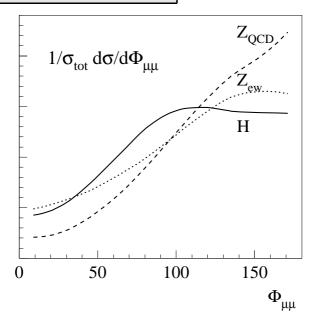
- \rightarrow random numbers \vec{r} basis for phase space configurations
- \rightarrow smearing! otherwise e.g. $\Delta m_{\mu\mu}^{\text{width}} \ll \Delta m_{\mu\mu}^{\text{meas}}$ too distinctive
- → smear observable/random number with Gaussian W


$$\sigma_{\mathrm{tot}} = \int \mathrm{d} \vec{\mathbf{r}}_{\perp} \mathrm{d} \mathbf{r}_{\mathrm{m}}^* \int_{-\infty}^{\infty} \mathrm{d} \mathbf{r}_{\mathrm{m}} \; \mathsf{M}(\vec{\mathbf{r}}) \; \mathrm{d} \sigma(\vec{\mathbf{r}}) \; \mathsf{W}(\mathbf{r}_{\mathrm{m}}, \mathbf{r}_{\mathrm{m}}^*)$$

- \rightarrow modified phase space vector $\vec{r} = {\vec{r}_{\perp}, r_m}$ without back door
- → complete smearing: replace phase space by set of distributions [lose mathematical maximum signifi cance claim]
- → about to be be implemented in Whizard [Cranmer, TP, Reuter]

WBF-HIGGS TO MUONS: 1

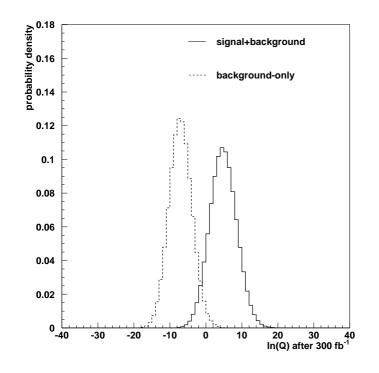
WBF Higgs with decay H $ightarrow \mu \mu$ [TP & Rainwater, 0107180]


- number of signal events small [$\sigma \cdot BR \sim 0.25 fb$]
- no distribution with golden cut
- → perfect form multivariate analysis

WBF-HIGGS TO MUONS: 1

WBF Higgs with decay H $ightarrow \mu \mu$ [TP & Rainwater, 0107180]

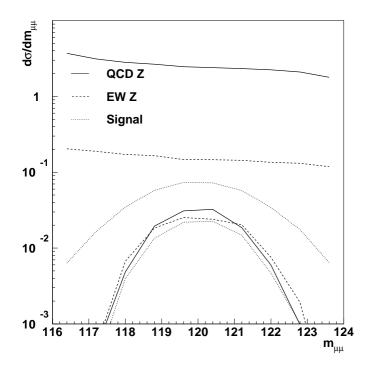
- number of signal events small $[\sigma \cdot BR \sim 0.25fb]$
- no distribution with golden cut
- → perfect for multivariate analysis


Old results [leading (irreducible) backgrounds]

\sqrt{S} [TeV]	M _H [GeV]	σ_{H} [fb]	σ_{Z}^{QCD} [fb]	σ_{Z}^{ew} [fb]	S/B	signifi cance σ	$\triangle\sigma/\sigma$	$\mathcal{L}_{5\sigma}$ [fb $^{-1}$]
14	115	0.25	3.57	0.40	1/9.1	1.7	60%	2600
14	120	0.22	2.60	0.33	1/7.5	1.8	60%	2300
14	130	0.17	1.61	0.24	1/6.5	1.7	65%	2700
14	140	0.10	1.11	0.19	1/7.5	1.2	85%	4900
200	115	2.57	39.6	5.3	1/10.1	5.3	20%	270
200	120	2.36	29.2	4.0	1/8.0	5.7	20%	230
200	130	1.80	18.7	2.7	1/6.9	5.3	20%	260
200	140	1.14	13.4	2.0	1/7.9	4.0	27%	500

WBF-Higgs to Muons: 2

Statistical promise of WBF H $\rightarrow \mu\mu$


- relevant for physics: confirm Yukawa coupling to 2nd generation
- gluon-fusion channel helpful? [Han & McElrath, Boos etal.]
- → for now try WBF alone
- cut analysis impossible
- event weighting promising
- only irreducible backgrounds
- smearing only relevant for $m_{\mu\mu}$ [mimic by Γ'_H]
- → compute likelihood from matrix elements
- → upper limit on parton level significance
- \rightarrow WBF H $\rightarrow \mu\mu$: 3.5 sigma in 300 fb⁻¹ [\sim 4.2 σ with jet veto; \gtrsim 5 σ for Atlas+CMS]
- ⇒ see if we can find an experimental group now

WBF-Higgs to Muons: 2

Statistical promise of WBF H $\rightarrow \mu\mu$

- relevant for physics: confirm Yukawa coupling to 2nd generation
- gluon-fusion channel helpful? [Han & McElrath, Boos etal.]
- → for now try WBF alone
 - cut analysis impossible
- event weighting promising
- only irreducible backgrounds
- smearing only relevant for $\mathsf{m}_{\mu\mu}$ [mimic by $\mathsf{\Gamma}'_{\mathsf{H}}$]
- → compute likelihood from matrix elements
- → upper limit on parton level significance
- \rightarrow WBF H $\rightarrow \mu\mu$: 3.5 sigma in 300 fb⁻¹ [\sim 4.2 σ with jet veto; \gtrsim 5 σ for Atlas+CMS]
- ⇒ see if we can find an experimental group now

OUTLOOK

Higgs/BSM news for LHC

- we can emulate the perfect experimentalist!
- another cool tool in the pipeline
- concept and feasibility shown
- incorporation into Whizard over summer