Unraveling the spin of the gluino at the LHC

A. Alves, O. Éboli, and T. Plehn

May 15, 2006

Inclusive searches

st Rather simple to rule out/discover gluinos and squarks up to $\simeq 2.5$ TeV

We'd like as much information as possible (masses, spin, etc) to reconstruct the low energy SUSY breaking parameters

Exclusive SUSY search

Particle masses can be determined using edges of invariant mass distributions in decay chains, *e.g.*

$$ilde{\mathbf{g}}
ightarrow ar{\mathbf{b}} ar{\mathbf{b}}_{\mathbf{L}}
ightarrow ar{\mathbf{b}} \mathbf{b} ar{\chi}_2^{\mathbf{0}}
ightarrow ar{\mathbf{b}} \mathbf{b} \mathbf{l}_2^{\pm} ar{\mathbf{l}}_{\mathbf{R}}^{\mp}
ightarrow ar{\mathbf{b}} \mathbf{b} \mathbf{l}_2^{\pm} \mathbf{l}_1^{\mp} ar{\chi}_1^{\mathbf{0}}$$

Exclusive SUSY search

Particle masses can be determined using edges of invariant mass distributions in decay chains, *e.g.*

$$ilde{\mathbf{g}}
ightarrow ar{\mathbf{b}} ar{\mathbf{b}}_{\mathbf{L}}
ightarrow ar{\mathbf{b}} \mathbf{b} ar{\chi}_{\mathbf{2}}^{\mathbf{0}}
ightarrow ar{\mathbf{b}} \mathbf{b} \mathbf{l}_{\mathbf{2}}^{\pm} ar{\mathbf{l}}_{\mathbf{R}}^{\mp}
ightarrow ar{\mathbf{b}} \mathbf{b} \mathbf{l}_{\mathbf{2}}^{\pm} \mathbf{l}_{\mathbf{1}}^{\mp} ar{\chi}_{\mathbf{1}}^{\mathbf{0}}$$

• $qq \rightarrow \tilde{q}\tilde{q}$ via a t-channel gluino (Barger, et al; Barnett et al.; Tata et al.)

-
$$\mathbf{gg}\;(\mathbf{q}\mathbf{ar{q}})\to\mathbf{ar{g}}\mathbf{ar{g}}$$
 with $\mathbf{ar{g}}\to\mathbf{q}\mathbf{ar{q}}^*$ or $\mathbf{ar{q}}\mathbf{ar{q}}$

Loop hole

- OUED: KK tower with same spin as in the SM
- \bigcirc UED lead to "similar signals" \implies we must probe the spin!

Study the decay chain used to measure the gluino mass

$$ilde{g}
ightarrow b ilde{b}^*/ar{b} ilde{b} \ \oplus \ ilde{b}
ightarrow ilde{\chi}_2^0
ightarrow ilde{\ell}
ightarrow ilde{\chi}_1^0$$

- compare SUSY with UED
- structure of interactions and spins lead to correlations between particles
- UED and SUSY with same spectrum and σ
- trade angles for invariant masses that are Lorentz invariant.
- We chose the signal processes

Reference point

Parameter point SPS1a

$$m_{\tilde{q}} = 608 \text{ GeV}, \ m_{\tilde{b}_1} = 517 \text{ GeV}, \dots$$

Reference point

Parameter point SPS1a

$$m_{\tilde{q}} = 608 \text{ GeV}, \ m_{\tilde{b}_1} = 517 \text{ GeV}, \dots$$

Impact of the SPS1a mass hierarchy

Basic acceptance cuts

 $p_{T,b} > 50 \text{ GeV}$ $p_{T,\ell} > 10 \text{ GeV}$ $p_{T,j}^{\min} > 40 \text{ GeV}$ $p_{T,j}^{\max} > 150 \text{ GeV}$ $|\eta_i| < 2.4$ $\Delta R_{ik} > 0.4$

Basic acceptance cuts	Background rejection cuts
$p_{T,b} > 50 \text{ GeV}$ $p_{T,\ell} > 10 \text{ GeV}$ $p_{T,j}^{\min} > 40 \text{ GeV}$ $p_{T,j}^{\max} > 150 \text{ GeV}$	GeV $m_{\ell\ell} < 80 \text{ GeV} m_{jj} < 300 \text{ GeV}$ $\tilde{M}_{\text{eff}} > 450 \text{ GeV}$
$ \eta_i < 2.4 \qquad \Delta R_{ik} > 0$.4
$\circ \sigma(\tilde{g}\tilde{g}) = 8.6 \text{ fb}$	
$lacksim \sigma(ilde q ilde q) = 85 \ { m fb}$	
$\triangleright S/B \simeq 1$	

subtract opposite flavor dileptons

 \bigcirc we use that we can identify *b* vs. \overline{b} with ab efficiency of 49%

350

Using the near *b*

220 240

SPS1a Mass Spectrum

100 120 140 160 180 200 220

 m_{bsl}^{\pm} [G

-0.25

-0.5

0

 $L = 200 \, fb^{-1}$ all cuts

40

20

60

80

For SPS1a it is possible to identify the near b ► We define

 $A^{\pm}(m_{b_{s}\ell}) = \frac{d\sigma/dm_{b_{s}\ell^{+}} - d\sigma/dm_{b_{s}\ell^{-}}}{d\sigma/dm_{b_{s}\ell^{+}} + d\sigma/dm_{b_{s}\ell^{-}}}$

* Let's explore $b-\overline{b}$ correlations They are independent of $\tilde{\chi}_2^0$ decay We can use the $b-\overline{b}$ azimuthal angle separation:

$$\frac{\sigma(\Delta\Phi_{bb} < 90^{\circ}) - \sigma(\Delta\Phi_{bb} > 90^{\circ})}{\sigma(\Delta\Phi_{bb} < 90^{\circ}) + \sigma(\Delta\Phi_{bb} > 90^{\circ})}$$

that is 0.08 ± 0.02 for UED and 0.24 ± 0.02 for SUSY.

* We could use also the average $b-\overline{b}$ rapidity

Final remarks

Separating the UED and SUSY decay chains is hard for a "typical" UED spectrum

 \bigcirc We are comparing decay chains \implies there is a dependence on other particles/interactions

Solution to the set of the set o

This gluino decay chain can give information on the R-L nature of the firstand second-generation sleptons

The LHC can lead to important information on the gluino spin

Backup slides

Degenerate UED spectrum

masses in the 500–600 GeV rage

Backup slides

Left and right sbottoms: $\tilde{b}_1 \simeq \tilde{b}_L$ and $\tilde{b}_2 \simeq \tilde{b}_R$

Backup slides

Left and right sleptons: $\tilde{\ell}_1 \simeq \tilde{\ell}_R$ and $\tilde{\ell}_2 \simeq \tilde{\ell}_L$

