Searches for New Physics in Rare *B* Decays at BaBar

 $b \rightarrow s\gamma$ inclusive/exclusive $B \rightarrow KII$ and $B \rightarrow K^*II$ $B \rightarrow \tau\nu$ and $B \rightarrow \tau\tau$

Jonathan Hollar

University of Wisconsin- Madison For the BaBar collaboration

Pheno '06 Symposium

Searching for New Physics in B Decays

At tree-level, Standard Model usually dominates \Rightarrow focus on decays with no tree-level SM contribution

- Rare flavor-changing neutral currents proceeding through loop/box "penguin" diagrams
- □ Virtual *t*, *W* appear in the loop \Rightarrow indirect probes of much higher energy scales

New Physics can enter at leading order!

BaBar detector & dataset

Need large data samples to study rare decays

- >350 fb⁻¹ (~370 million B-pairs) delivered by PEPII
- Analyses shown here use
 80 210 fb⁻¹ samples

03/27/2006 04:21

Analyses exploit BaBar's:

- □ Good neutral energy resolution
- □ Charged K/π separation, lepton ID
- Low multiplicity environment, coherent production of B-pairs

$b \rightarrow s\gamma$

Rate depends on the C₇ "Wilson coefficient" in the Operator Product Expansion

 New physics can alter magnitude/sign of C₇
 Also sensitive to non-SM righthanded currents

Experimentally: large backgrounds of photons from light quarks (continuum), initial state radiation, π^0 from *B* decays

Analyses can be done:

- □ **Inclusively: theoretically clean**, more difficult experimentally
- □ **Exclusively: easier experimentally**, more theoretical uncertainties (form factors)

Inclusive $b \rightarrow s\gamma$ analyses

Sum-of-exclusive

Fully reconstruct the *B* in 38 distinct final states (\sim 60% of total):

- \Box $K\gamma$ +n π (n < 5), also states w. an η or 1-3 kaons
- Neural network to reject background
- Extract yield from fit to energy substituted mass:

$$m_{ES} = \sqrt{\frac{s}{4} - p_B^{*2}}$$

Fully Inclusive

Use only the $\boldsymbol{\gamma}$

Lepton "tag" from the
 other B to reduce
 backgrounds

Subtract remaining backgrounds

Eγ > 1.9 GeV

-Pheno 2006 Symposium Eγ > 1.9 GeV

$b \rightarrow s\gamma$ results

Outstanding agreement between experiment and SM

 Strong constraints on many New Physics scenarios

Coming improvements

- □ More data (experiment)
- □ NNLO calculation (theory)

B(B → sγ) = (3.55 ± 0.26) x 10⁻⁴ Exp. world avg. B(B → sγ) = (3.61 ^{+0.37} _{-0.49}) x 10⁻⁴ SM (NLO) (HFAG extrapolation to Eγ > 1.6 GeV)

$b \rightarrow s\gamma$ asymmetries

CP, isospin asymmetries are complementary probes of New Physics Null tests of SM predictions, e.g.

$$\begin{split} \mathsf{A}_{\mathsf{CP}}(B \to X_s \gamma) &\sim 10^{-4} \\ \mathsf{A}_{\mathsf{CP}}(B \to (X_s + X_d) \gamma) &\sim 10^{-9} \end{split}$$

$$A_{CP} \equiv \frac{\Gamma(b \to x\gamma) - \Gamma(\overline{b} \to \overline{x}\gamma)}{\Gamma(b \to x\gamma) + \Gamma(\overline{b} \to \overline{x}\gamma)}$$

New Physics could lead to asymmetries of order $10^{-2} - 10^{-1}$

Results are all consistent with the SM

□ *CP* asymmetries measured with precision of 5-10%

Exclusive $B \rightarrow \eta(') K \gamma$

BF Results (x 10⁻⁶)

 $\mathsf{B}(B^{\scriptscriptstyle +} \to \eta K^{\scriptscriptstyle +} \gamma) = 10.0 \pm 1.3 \pm 0.5$

B(
$$B^0 \rightarrow \eta K^0 \gamma$$
) = 11.3 ^{+2.8} _{-2.6} ± 0.6

 $\mathsf{B}(B^+ \to \eta' K^+ \gamma) \leq 4.2$

 $\mathsf{B}(B^0\to\eta'\!K^0\gamma)<6.6$

Submitted to PRL (hep-ex/0603054)

 $A_{CP}(B \rightarrow \eta K^+ \gamma)$ = -0.086 ± 0.120 ± 0.010

Improved measurement of $\eta K\gamma$ - First 5 σ observation of neutral mode

First search for $\eta' K \gamma$ - No signal observed (suppressed relative to $\eta K \gamma$)

First measurement of direct *CP* asymmetry in $\eta K\gamma$ mode – consistent with 0, SM

 $B \rightarrow K^{(*)} \parallel$

Three diagrams (at least) at leading order

 \Box γ penguin, Z penguin, W-box

 C_7 (EM), C_9 (vector), C_{10} (axial vector) Wilson coefficients

- □ Magnitude of C_7 fixed by $b \rightarrow s_{\gamma}$, sign not yet determined
- Additional operators/C_i also possible: scalar/Higgs penguins, etc.

3-body decays \Rightarrow disentangle magnitude and sign of different operators

$B(B \rightarrow KII) = (0.34 \pm 0.07 \pm 0.02) \times 10^{-6}$
$B(B \rightarrow K^* I I) = (0.78 \pm 0.18 \pm 0.11) \times 10^{-6}$

Angular variables

Kaon decay angle $cos(\theta_{K})$ gives longitudinal K^* polarization

 \Box Sensitive to sign(C₇) or new right-handed currents at low q²

$B \rightarrow K^{(*)}$ // Analysis and $B \rightarrow K$ // Results

Fits to $cos(\theta^*)$, $cos(\theta_K)$ to extract A_{FB} , K^* polarization in 2 bins of q^2

- Background angular distributions modeled from sideband control samples
- Correct for angular efficiency/acceptance
- □ Procedure validated on $J/\psi K^{(*)}$, $\psi' K^{(*)}$ control samples

$B \rightarrow K^* // \text{Results}$

Phys. Rev. D 73 092001 (2006)

Rare *B* decays with τ 's

New Physics could couple strongly to heavy/3rd generation leptons

□ Higgs, leptoquarks, etc.

Extremely challenging analyses

 The τ decays, with undetectable neutrinos in the final state

Reconstruct the other ("Tag") B

- as $B \to D^{(*)}$ + hadrons or $B \to D^{(*)} h$
 - Anything left is (ideally) from the other B
 - Partially reconstruct τ candidates in several decay modes (typically 30-50% of the total rate)
 - True signal has little residual energy ("E_{extra}" or "E_{res}") in the calorimeter

Decay modes

 $B \rightarrow \tau \nu$

 $B \rightarrow \tau \tau$

 $B \rightarrow \tau \nu$ results

No signals observed \Rightarrow set upper limits from combined hadronic/semileptonic tag analyses

 $B(B \to \tau v) < 2.6 \times 10^{-4}$ (90% CL)

Phys. Rev. D 73, 057101 (2006)

Limits within a factor ~2 of SM prediction

Constraints on charged Higgs mass/tan β in Type II 2HDM

□ Complementary to limits from $b \rightarrow s\gamma$ at high tan β

 $B \rightarrow \tau \tau$ results

No evidence of signal:

N (expected background) = 281 ± 40 N (observed) = 263 ± 19

 $B(B \rightarrow \tau \tau) < 3.4 \times 10^{-3}$ (90% CL)

First ever limits on this decay mode!

New limits on 3rd generation leptoquark masses/couplings

Submitted to PRL (hep-ex/0511015)

Rare *B* decays are an excellent place to find/constrain New Physics

 $b \rightarrow s\gamma$ rates, *CP* asymmetries are now precision measurements \Box Strong constraints on many models

 $A_{FB}(B \rightarrow K^*II)$ disfavors new physics with wrong sign C_9C_{10} \Box Determination of sign of C_7 with more data

 $B \rightarrow \tau v$ approaching SM sensitivity (evidence from Belle)

First limits on $B \rightarrow \tau \tau$

Analyses shown here use only 8 - 20% of the final BaBar dataset Most measurements are statistics limited – stay tuned for new results!

Extra Slides

$b \rightarrow s\gamma$ spectrum/moments

 $b \rightarrow s\gamma$ photon spectrum, moments not sensitive to new physics (2-body decay)

- Can study parameters of the Heavy Quark Expansion (HQE)
- □ Determination of m_b to < 1%

From combination of $b \rightarrow s\gamma$ (BaBar, Belle + CLEO) with $b \rightarrow c/\nu$ (BaBar):

	m _b (GeV)	μ_{π} (GeV ²)
Kinetic scheme	4.590 ± 0.039	0.401 ± 0.040
Shape function scheme	4.604 ± 0.038	0.189 ± 0.038

2.3

2.4

BABAR

2.5 2.6 E_v (GeV)

Branching Fraction / 100 MeV

0.1

0.1

0.05E

-0.05^L 1.9 Data

Kinetic scheme Shape Function scheme

2.1

2.2

More $B \rightarrow K^{(*)} / /$

$$\begin{split} \mathsf{A}_{\mathsf{CP}}(K^*/l) &= -0.07 \pm 0.22 \pm 0.02 \\ \mathsf{A}_{\mathsf{CP}}(K^*/l) &= 0.03 \pm 0.23 \pm 0.03 \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{SM}) \sim 0 \end{split}$$

Muon/electron ratios R_{κ} = 1.06 ± 0.48 ± 0.08 R_{κ^*} = 1.40 ± 0.78 ± 0.10 R_{κ} (SM) = 1.0000 ± 0.0001

Improved limits on LFV modes		
B(<i>B</i> → <i>K</i> eµ) < 3.8 x 10 ⁻⁸	(90% CL)	
B(<i>B</i> → <i>K</i> *eµ) < 51 x 10 ⁻⁸	(90% CL)	

All results are consistent with SM predictions

Belle $B \rightarrow K^{(*)} / /$

Analysis based on 414 fb-1

Fit directly for Wilson coefficients from q^2 , $cos(\theta^*)$

- \Box Fix C₇ to +/- SM value
- \Box Wrong-sign C₉C₁₀ excluded at 98.2% CL
- □ Consistent with SM or wrong-sign C₇

Integrated discrete asymmetry A_{FB} (*K*II*) = 0.50 ± 0.15 ± 0.02 A_{FB} (*KII*) = 0.10 ± 0.14 ± 0.01

If no new physics in loops, ratio $(B \rightarrow (\rho/\omega)\gamma)/(B \rightarrow K^*\gamma)$ gives ratio of CKM matrix elements V_{td}/V_{ts}

BaBar 192 fb⁻¹ result:

$$\begin{split} \mathsf{B}(B \to \rho(\omega)\gamma) &= (0.6 \pm 0.3 \pm 0.1) \times 10^{-6} \\ &(2.1\sigma \text{ significance}) \end{split}$$
 $|\mathsf{V}_{td}/\mathsf{V}_{ts|} < 0.19 \qquad (90\% \text{ CL}) \end{split}$

If SM, should be consistent with values extracted from B_s mixing (CDF/D0)

Combined BaBar/Belle constraint from ρ^0 mode (UTfit)

$B \rightarrow \tau \nu$ in the SM

$B \rightarrow \tau \tau$ Leptoquark limits

$$\begin{split} \lambda_L \lambda_R, \lambda_R \lambda_L < 1.3 \times 10^{-3} \left[\frac{m_{V_0}}{100 \, GeV} \right]^2 \\ \lambda_L \lambda_L, \lambda_R \lambda_R < 9.8 \times 10^{-3} \left[\frac{m_{V_0}}{100 \, GeV} \right]^2 \\ \lambda_R \lambda_R < 9.8 \times 10^{-3} \left[\frac{m_{V_{1/2}}}{100 \, GeV} \right]^2 \\ \lambda_R \lambda_R < 4.9 \times 10^{-3} \left[\frac{m_{S_{1/2}}}{100 \, GeV} \right]^2 \\ \lambda_R \lambda_R < 4.9 \times 10^{-3} \left[\frac{m_{S_0}}{100 \, GeV} \right]^2 \end{split}$$

Fermion subscripts are omitted. Subscripts L or R indicate quark chirality.

BF is enhanced by $\lambda_{31}\lambda_{33}$, suppressed by $1/m_{(LQ)}^{4}$

Grossman, Ligeti, and Nardi Phys. Rev. D 55, 2768 (1997)

Even more rare leptonic decays

Decay Mode	SM Prediction	BaBar UL (90% CL)
$B^0 \rightarrow e^+ e^-$	2.4×10 ⁻¹⁵	6.1×10 ⁻⁸
$B^0 \rightarrow \mu^+ \mu^-$	1.0×10 ⁻¹⁰	8.3×10 ⁻⁸
$B^0 \rightarrow e^{\pm} \mu^+$	Negligible	18×10 ⁻⁸
		PRL 94, 221803 (2005)
$B^+ \rightarrow K^+ \nu \nu$	4×10-6	5.2×10 ⁻⁵
$B^+ \rightarrow \pi^+ \nu \nu$		1.0×10 ⁻⁴
		PRL 94, 101801 (2005)
$B \rightarrow \nu \nu$	$\propto ({ m m_v}/{ m m_{B^\circ}})^2$	2.2×10-4
("Invisible")		PRL 93 , 091802 (2004)
$B^+ \rightarrow \mu^+ \nu$	4.2×10-7	6.6×10-6
		PRL. 92, 221803 (2004)