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How do we measure masses and spin?

Given a set of events E(pµ
i ),

• Take p
µ
i and directly construct (histogram) the observable for

each event.

• If the observable requires some missing p
µ
m, construct a different

observable y(pµ
l ) that requires only the measured p

µ
l .

• Hope (or discover by Monte Carlo) that y(pµ
l ) is correlated with

“interesting” observable.

• Hope (or discover by Monte Carlo) that missing E0, pz0 don’t

smear out signal (at hadron colliders).



Drawbacks to “classical” techniques

When missing energy is present or initial E0 and p0z are not known,

• Many observables to choose from. It’s not obvious which is best.

• It’s not obvious that any given observable is “optimal”. One

generally does not use all of the observed p
µ
l . There may be

more information contained in the momenta that aren’t used to

construct observable y(pµ
l ).

• Many observables are constructed by finding kinematic edges, or

“shapes”. It’s not obvious which shape to fit, whether back-

ground and combanitorics will smear out the shape.

• What will be the rate of “false positive” shape fits?



Classical Attempts

Many variables, many

shapes, many edges, how

does the experimentalist

chose?
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Cross Sections as Probability Densities

A cross section generally is given by

σ =
1

F

∫ ∣∣∣M(pµ
0, p

µ
i )

∣∣∣2
∏

i

d3~pi

(2π)32Ei

 (2π)4δ4(pµ
0 −

∑
ip

µ
i ) (1)

for some initial state momenta p
µ
0 and final state momenta p

µ
i . This is

a zero-dimensional projection of a high-dimensional phase space, and

as such contains very little information! Buried in here somewhere is

all the information that is to be had.
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for some initial state momenta p
µ
0 and final state momenta p

µ
i . This is

a zero-dimensional projection of a high-dimensional phase space, and

as such contains very little information! Buried in here somewhere is

all the information that is to be had.

Let us do a little rearrangement to retain all information in the high-

dimensional space.

P (pµ
i ) =

1

σ

dσ∏
i d3~p

=
(2π)4−3N

2NFσ
∏

i Ei

∣∣∣M(pµ
0, p

µ
i )

∣∣∣2 δ4
(
p
µ
0 −

∑
ip

µ
i

)
. (2)

this is a probability density expressing the probability of a particular

configuration of momenta. For N external particles, it is a 3N − 4

dimensional space.



Cross Sections as Probability Densities II

P (pµ
i ) =

1

σ

dσ∏
i d3~p

=
(2π)4−3N

2NFσ
∏

i Ei

∣∣∣M(pµ
0, p

µ
i )

∣∣∣2 δ4
(
p
µ
0 −

∑
ip

µ
i

)
. (3)

In principle, one could directly compare this PDF (Probability Density
Function) between simulated events and data. But, high-dimensional
spaces require a lot of data to map out.

So, let us project this PDF onto a lower dimensional space.

P (E1) =
∫ P ((E1; p1x, p1y,

√
E2

1 −m2
1 − p2

1x − p2
1y), p

µ
i )

2(2π)3Fσ
√

E2
1 −m2

1 − p2
1x − p2

1y

× dp1xdp1y

∏
i6=1

d3~pi

where we have changed variables p1z =
√

E2
1 −m2

1 − p2
1x − p2

2x.

In this way we can obtain the shape of any distribution. All one-
dimensional variables can be obtained in this manner, by performing
an appropriate projection.

Overall normalization (here: σ) is always hard, but we don’t need it!



Probability Densities for Hadron Colliders

The previous equations assumed all initial and final state momenta

were known. e.g. a lepton collider. At hadron or photon colliders

this is not the case. So we must integrate over the initial state as

well.

Phad(p
µ
i , x1, x2) =

1

σ

dσ

dx1dx1
∏

i d3~p

=
(2π)4−3N

2NFσ
∏

i Ei
fi1(x1)fj2(x2)

∣∣∣Mij(p
µ
0, p

µ
i )

∣∣∣2 δ4
(
p
µ
0 −

∑
ip

µ
i

)
.

for parton i and j having Parton Density Functions fi1 and fj2 re-

spectively and p
µ
0 =

√
s(x1 + x2; 0,0, x1 − x2).



Probability Densiities with Missing Energy

If one expects new physics to explain the Dark Matter component

of the universe, one generically expects a dark matter particle, with

non-zero mass to escape the detector.

Therefore in events with missing particles, we must project the pre-

vious probability densities onto the space of measured particles

Pmeas(p
µ
l ) =

(2π)4−3N

2NFσ
∏

l El

∫ ∣∣∣Mij(p
µ
0, p

µ
l , pµ

m)
∣∣∣2 δ4

(∑
ip

µ
i

) ∏
m

d3~pm

Em

for lepton colliders or

Pmeas,had(p
µ
l ) =

(2π)4−3N

2NFσ
∏

l El

×
∫

f1i(x1)f2j(x2)
∣∣∣Mij(p

µ
0, p

µ
l , pµ

m)
∣∣∣2 δ4

(∑
ip

µ
i

)
dx1dx2

∏
m

d3~pm

Em

for hadron or photon colliders.



Observables from PDF’s with Missing Energy

Any observables yk are a projection of Pmeas(p
µ
i ) onto a lower dimen-

sional space of interest. One first changes variables from missing
momentum components p

µ
m to the observables yk, and integrates out

the remaining momenta. With K observables and M missing mo-
menta

P (yk) =
(2π)4−3N

2NFσ

∫
J(yk(p

µ
i ))f1i(x1)f2j(x2)

∣∣∣Mij(p
µ
i )

∣∣∣2 δ4
(∑

ip
µ
i

)
dx1dx2

∏
i

1

Ei

3M−K∏
n=1

dpn
∏
l

d3~pl

for visible particles l and invisible particles m, where P (pµ
i ) is the full

probability density (missing stuff too).

However nature samples this distribution for us, discretely. Therefore

P (yk) =
1

#events

∑
events

(2π)4−3N

2NFσ
∏

l El

×
∫

J(yk(p
µ
i ))f1i(x1)f2j(x2)

∣∣∣Mij(p
µ
i )

∣∣∣2 δ4
(∑

ip
µ
i

)
dx1dx2

∏
m

1

Em

3M−K∏
n=1

dpn



To Jacobian or not to Jacobian

In general this procedure involves constructing the (possibly very com-

plicated) Jacobian of the variable transformation.

Jacobians, in general, may be complicated, non-analytic, multiple

valued, and involve combanitorics (and therefore be a sum of several

Jacobians).

So instead consider

P (yk) =
1

#events

∑
events

∫ ∣∣∣Mij(p
µ
i )

∣∣∣2 Q(pµ
i )

3M−K∏
k=1

dpk

where Q(pµ
i ) is some arbitrary function. I’ve absorbed the parton

density functions, all constants, and energies into Q(pµ
i ).

Q(pµ
i ) destroys your ability to interpret P (yk) as a physical probability

distribution.

But! One can still compare P (yk) between theory and experiment.



tt̄ Di-lepton Topology

We choose the tt̄ di-lepton topology to study. Many SUSY process
fit into this topology
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Constraints

In order to use this technique, one must specify a hypothesis M(pµ
i ).

We take this to be

M(pµ
i ) = δ(p2

1 − p2
6)

×δ((p1 + p2)
2 − (p5 + p6)

2)

×δ((p1 + p2 + p3)
2 − (p4 + p5 + p6)

2)

i.e. Narrow Width Approximation.

If we take E1 and E6 to be free (i.e. we don’t know the missing
particle’s mass), there are 3 missing momenta to integrate. Choose
E1, E6, p6z.

E0, p0z 2
p
µ
1, p

µ
6 8∑

i p
µ
i = 0 -4

M(pµ
i ) constraints -3

variables to integrate 3

These constraints remove a significant amount of background and
combanitorics!



Project into Mass space

Now, project into Mass space and construct P (M1, M2, M3). We can

project onto at most 3 dimensions with this choice of M(pµ
i ).

The constraints give complicated, multiple valued solutions. There-

fore we will not attempt to construct a Jacobian.

Since the integral must be done using monte carlo techniques, we

must specify a PDF from which to sample the quantities being in-

tegrated. But that PDF is a function of the masses, and we don’t

know the masses yet!

Therefore we will choose something simple (e.g. uniform on [0,14TeV])

Q(pµ
i ) is a computer subroutine that fills a histogram of the masses.

This means P (M1, M2, M3) is not a probability density, but just some

transformation on the kinematics of the event. (But we know it has

something to do with mass!)
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Why is there no mass scale degeneracy

The first kinematic quantity I solve for is p1z, which is a quadratic

p2
1z + Ap1z + (E2

6 − p2
6z − E2

1 + BE6 + Cp6z + DE1 + F ) = 0. (4)

This has a discriminant

Dp1z = A2 − 4(E2
6 − p2

6z − E2
1 + BE6 + Cp6z + DE1 + F ) ≥ 0. (5)

Therefore one can see a degeneracy for E1 ' E6 →∞; p6z ' 0

The ability to get a positive discriminant provides significant back-

ground and combanitoric rejection!

Even with a positive Dp1z, most solutions have negative M2.

One can derive a condition that M2
W = 0. This condition is a quartic

and has a mass degeneracy for

− (Q2
1 − I4

1)E4
6 + (P2

1 − I2
1)E4

1 + (R2
1 −G4

1)p
4
6z ' 0. (6)



Why is there no mass scale degeneracy, ctd.

Therefore, the mass scale degeneracy represents a lower dimensional

subspace of the Probability Density Function. Therefore it has no

volume in the higher dimensional space, and has no probability!

The intersection of the M2 > 0 and Dp1z ≥ 0 conditions gives an even

lower dimensional space.

Therefore, it is possible to make 1-dimensional projections that will

show mass scale degeneracies, since for a given event, there generally

is a 1-dimensional degeneracy. But this is an un-clever choice of

variables.



Spin

Projecting onto spin is much easier.

Using the same M(pµ
i ), one can simply histogram any angle one

desires. Since M(pµ
i ) is not a function of any angles, angles are not

affected by it. (Unlike masses)

One can histogram cos θ for any subdiagram of the event, simulta-

neously fitting the spin of several particles.

It is necessary to have the correct masses!



cos theta
Entries  1970
Mean   0.009401
RMS    0.6521

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

20

25

30

35

40

45

50

cos theta
Entries  1970
Mean   0.009401
RMS    0.6521

Cos theta



cos theta
Entries  94960
Mean   -0.009646
RMS    0.5536

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

38

40

42

44

46

48

50

52

54

cos theta
Entries  94960
Mean   -0.009646
RMS    0.5536

Cos theta



Conclusions

The correct way to (analytically) obtain physical observables is to

take the fully differential PDF 1/σdσ/d
∏

i ~pi and project it onto the

observable you’re interested in by changing one momentum compo-

nent to that variable, and integrating over all other momenta.

Missing particles must be projected out from the full PDF to obtain

Pmeas(p
µ
l ).

The missing particle projection allows one to consider their distribu-

tions to be continuous, performing the projection on an event-by-

event basis.

Events with > 2 missing particles become very hard.

Events with more resonances (more constraints) can be totally solved

using constraints. 2 missing particles with 4 intermediate masses at a

hadron collider allows one to solve for all components of the neutrino

missing momentum.



Conclusions

This eliminates the necessity to choose shapes and clever variables.

Simple Matrix element hypotheses can be tested in an automated

way. Lagrangians can be built from the bottom up, one resonance

at a time.
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