LHC Multi-Particle Simulation for the MSSM and beyond

Jürgen Reuter

DESY Theory Group, Hamburg

PHENO 06, 15. May 2006

Outline

- New Physics at the LHC
- Multi-Particle Event generators
- Hard Jets and SUSY WBF
- Sbottom Production at LHC
- BSM Simulations beyond the MSSM
- Anomalous Quartic Gauge Couplings
- Summary & Outlook

Precision measurements

Hopefully: New physics signals: $\not\!\!\!E_T$, high- p_T jets, high lepton multiplicities but: What kind of new physics?

- Spin of all new particles (difficult at LHC!, cf. Barr/Miller/Webber et al.)
- Mass measurements to get the spectrum. Cascade decays: endpoints of energy spectra provide mass differences
- Coupling measurements: verify models by the structure of couplings
- Precise predictions for BSM processes: , these are background to other (more difficult) BSM processes
- Precise parameter values: Learn something about the UV, breaking of new symmetries, etc.
 - e.g. SPA project EPJ C46 (2006), 43; http://spa.desy.de/spa

Approximations vs. Accuracy

- Radiative corrections have to be included (not only K-factors, cf. later) BUT also
- Non-factorization of processes into 2 → 2 production processes and decays is not sufficient. ⇒ Include off-shell intermediate states and full gauge-invariant diagram classes
- SM and SUSY backgrounds (for LHC, but also for ILC; in general: no factorization for signal/background!
- Large number of complicated models with complicated pheno: Need for arbitrary, not only hard-coded processes
- Spin correlations: information about the spin of particles in cascades (0 vs. 1/2, 3/2?, ...)

Traditional MC generators (e.g. PYTHIA, HERWIG, SUSYGEN) limited

Overview over the Tools

New generator generation which includes *all issues* above and can handle the complexity mentioned:

Helas/(S)Madgraph/MadEvent K. Hagiwara, F. Maltoni, T. Plehn, D. Rainwater, T. Stelzer http://www.ph.ed.ac.uk/~plehn/smadgraph/smadgraph.html

W. Kilian, T. Ohl, J. Reuter

http://theorie.physik.uni-wuerzburg.de/~ohl/omega/ http://www-ttp.physik.uni-karlsruhe.de/whizard

Amegic++/Sherpa

T. Gleisberg, S. Höche, F. Krauss, T. Laubrich, S. Schumann, C. Semmling, J. Winter http://www.sherpa-mc.de

Description of the codes

Matrix element generation:

- 3 different algorithms for generation of helicity amplitudes for multi-particle processes
- elimination of redundancies in amplitudes

Phase space integration:

 3 different but comparable approaches, based on multi-channel adaptive integration

Multi-Purpose Event Generators:

- Widths, Cross Sections and arbitrary distributions calculable
- Provide interfaces to parton showers and hadronization packages (PYTHIA); Sherpa has its own parton shower
- Event generation in formats that can be passed to detector simulations (like STDHEP, HEPEVT)

Validation of codes

TESTS:

- Unitarity $(2 \rightarrow 2, \text{ many } 2 \rightarrow 3 \text{ processes})$
- Ward- and Slavnov-Tayler identities for gauge groups and SUSY (Ohl/JR, EPJ C30, 525)
- Comparison of the different programs

Validation of codes

K. Hagiwara/W. Kilian/F. Krauss/T. Ohl/T. Plehn/D. Rainwater/JR/S. Schumann, PRD 73, 055005 (2006) Aim: Test ALL SUSY couplings of phenomenological relevance

- ► Initial states: e^+e^- , $e^-\bar{\nu}_e$, e^-e^- , $\tau^+\tau^-$, $\tau^-\bar{\nu}_\tau$, $u\bar{u}$, $d\bar{d}$, uu, dd, $b\bar{b}$, $b\bar{t}$, W^+W^- , W^-Z , $W^-\gamma$, ZZ, $Z\gamma$, $\gamma\gamma$, gW^- , gZ, $g\gamma$, gg ug, dg
- Final states: All combinations of SUSY particles and Higgs bosons

http://www-ttp.physik.uni-karlsruhe.de/~reuter/susy_comparison.html

http://www/sherpa-mc.de/susy_comparison/susy_comparison.html

$ff \rightarrow X$							
Process	stat.	Madgraph/Helas		Whizard/O'Mega		Sherpa/A'Megic	
		0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV
$e^-e^- \rightarrow \tilde{e}_L \tilde{e}_L$		520.30(4)	36.83(3)	520.31(3)	36.836(2)	520.32(3)	36.832(2)
$e^-e^- \to \tilde{e}_R \tilde{e}_R$		459.6(1)	28.65(3)	459.59(1)	28.650(3)	459.63(3)	28.651(2)
$e^-e^- \rightarrow \tilde{e}_L \tilde{e}_R$		160.04(1)	56.55(2)	159.96(2)	56.522(8)	160.04(2)	56.545(3)
$uu \rightarrow \tilde{u}_L \tilde{u}_L$		- //	716.9(1)	—	716.973(4)	—	716.99(4)
$uu \to \tilde{u}_R \tilde{u}_R$		_///	679.6(1)	—	679.627(4)	—	679.54(4)
$uu \rightarrow \tilde{u}_L \tilde{u}_R$		/	1212.52(6)	—	1212.52(5)	—	1212.60(6)
$dd \rightarrow \tilde{d}_L \tilde{d}_L$		—	712.6(1)	—	712.668(4)	—	712.68(4)
$dd \rightarrow \tilde{d}_R \tilde{d}_R$		_	667.4(1)	_	667.448(4)	_	667.38(3)
$dd \rightarrow \tilde{d}_L \tilde{d}_R$		_	1206.22(6)	_	1206.22(5)	—	1206.30(7)

J. Beuter

Adapt PYTHIA showers to exact results on jet radiation

Plehn/Rainwater/Skands, hep-ph/0510144

- large number of hard jets in SUSY QCD production
- correct description of spectra for p_T > 100 GeV needs hard matrix elements

Adapt PYTHIA showers to exact results on jet radiation

Plehn/Rainwater/Skands, hep-ph/0510144

large number of hard jets in SUSY QCD production

 correct description of spectra for p_T > 100 GeV needs hard matrix elements

EW SUSY pairs in Weak Boson Fusion at LHC:

Cho et al., Phys.Rev.D73 (2006), 054002

- ► Production of $\chi_i^0 \chi_j^0$, $\chi_i^0 \chi_j^{\pm}$, $\chi_i^{\pm} \chi_j^{\mp}$, $\chi_i^{\pm} \chi_j^{\pm}$, $\tilde{\ell}^+ \tilde{\ell}^-$, $\tilde{\nu}_\ell \tilde{\ell}^+$
- For SPS points rates are very small
- Exception: $\chi_i^+ \chi_j^+$

Sbottom Production at LHC

Hagiwara et al., PRD 73 (2006), 055005

- \tilde{b}_1 production with subsequent decay $\tilde{b}_1 \to \tilde{\chi}_1^0 b$ Parameter point with
 - Light LSP: $m(\tilde{\chi}_1^0) \approx 47 \, \text{GeV}$
 - Light Sbottom: $m(\tilde{b}_1, \tilde{b}_2) \approx 295/400 \text{ GeV}, m(\tilde{q}) \sim 430 \text{ GeV}$
 - ► Large invisible Higgs decay: $BR(H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) \sim 0.45$
 - Cuts: $p_{T,b} > 20 \text{ GeV}, |\eta_b| < 4, \text{ and } \Delta R_{bb} > 0.4.$

- Parton level distribution
- Main SM bkgd: $gg \rightarrow b\bar{b}\nu\bar{\nu}$
- Signal jets are harder

Off-Shell Effects at the LHC:

- Both b jets are quite hard
- PS: harder jet is more central
- ► Off-shell effects $(b\bar{b}Z^*)$: $\sigma = 1120 \text{ fb} \rightarrow 1177 \text{ fb}$, sizeable in low $p_{T,b} \longrightarrow$ can be cut out here
- No guarantee in general

Off-Shell Effects at the LHC:

- Both b jets are quite hard
- PS: harder jet is more central
- Off-shell effects $(b\bar{b}Z^*)$: $\sigma = 1120 \text{ fb} \rightarrow 1177 \text{ fb}$, sizeable in low $p_{T,b} \longrightarrow$ can be cut out here
- No guarantee in general

Proc.	$\sigma_{2\rightarrow 2}$ [fb]	$\sigma \times$ BR [fb]	$\sigma_{\rm BW}$ [fb]	$\sigma_{\rm BW}^{\rm cut}$ [fb]
Zh	20.574	1.342	1.335	0.009
HA	5.653	0.320	0.314	0.003
$ ilde{\chi}_1^0 ilde{\chi}_2^0$	69.106	13.078	13.954	0.458
$ ilde{\chi}_1^{ar{0}} ilde{\chi}_3^{ar{0}}$	24.268	3.675	4.828	0.454
$ ilde{\chi}_1^{ar{0}} ilde{\chi}_4^{ar{0}}$	19.337	0.061	0.938	0.937
$\tilde{b}_1 \tilde{b}_1^*$	4.209	0.759	0.757	0.451
Sum		19.238	22.129	2.314
Exact			19.624	0.487

Take a look to the ILC:

- Analogous process: $e^+e^- \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$ @ 800 GeV
- ► Cuts on *M*_{bb̄} to remove resonances

Bottom-Jet Radiation

Study $g \rightarrow b\bar{b}$ splitting, i.e. *b* ISR as a combinatorial bkgd.

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 diagrams, 22 color flows, ~ 4000 PS channels

- $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb drops to } \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$
- Forward discrimination of ISR and decay b jets difficult:

Only most forward b jet considerably softer

Bottom-Jet Radiation

Study $g \rightarrow b\bar{b}$ splitting, i.e. *b* ISR as a combinatorial bkgd.

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 diagrams, 22 color flows, ~ 4000 PS channels

- $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb drops to } \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$
- Only minor differences for $p_{T,b}$, peaked at lower value because of PDFs

• p_T shifted to smaller momenta: light particles balance the event out

BSM Simulations beyond the MSSM

O'Mega/WHiZard Status Report: O'MEGA v. 000.011, WHIZARD v. 1.51

Preparation for joint new version: O'MEGA v. 1.0, WHIZARD v. 2.0 will be ready for SUSY/BSM Tools or MC4LHC 06-07 2006

implemented, upcoming in 1.0/2.0 version

Models:

- SM, MSSM, Anomalous Gauge Couplings
- NMSSM, ESSM, SUSY exotics
- Littlest Higgs, Simplest Little Higgs, T parity models
- Xdim: RS, UED, (partly): Noncommutative Standard Model
- Collider environments:
 - ► LHC: CERNLIB, LHAPDF
 - ILC: ISR, beamstrahlung, beam energy spread
 - $\gamma\gamma$: photon structure functions

Example LHC projects: Anomalous QGC: Kilian/Mertens/JR/Schumacher, 2006, NCSM: Alboteanu, Ohl, Rückl, 2006, RS-Gravitons: Boos/Kilian/JR, 2006, Little Higgs Pseudoaxions: Rainwater/JR, DESY-06-055

J. Reuter

Anomalous Quartic Gauge Couplings

- ILC: Beyer/Kilian/Krstonošić/Mönig/JR/Schröder/Schmidt, hep-ph/0604048
- LHC: Kilian/Mertens/JR/Schumacher

Anomalous QGC parameterized by Chiral EW Lagrangian:

 $\mathcal{L}_4 = \alpha_4 \operatorname{tr} \left[V_{\mu} V_{\nu} \right] \operatorname{tr} \left[V^{\mu} V^{\nu} \right] \qquad \mathcal{L}_5 = \alpha_5 \operatorname{tr} \left[V_{\mu} V^{\mu} \right]^2$

Anomalous Quartic Gauge Couplings

- ILC: Beyer/Kilian/Krstonošić/Mönig/JR/Schröder/Schmidt, hep-ph/0604048
- LHC: Kilian/Mertens/JR/Schumacher

Anomalous QGC parameterized by Chiral EW Lagrangian:

$$\mathcal{L}_{4} = \alpha_{4} \frac{g^{2}}{2} \left\{ \left[(W^{+} \cdot W^{+})(W^{-} \cdot W^{-}) + (W^{+} \cdot W^{-})^{2} \right] + \frac{2}{c_{W}^{2}} (W^{+} \cdot Z)(W^{-} \cdot Z) + \frac{1}{2c_{W}^{4}} (Z \cdot Z)^{2} \right\}$$

$$\mathcal{L}_{5} = \alpha_{5} \frac{g^{2}}{2} \left\{ (W^{+} \cdot W^{-})^{2} + \frac{2}{c_{W}^{2}} (W^{+} \cdot W^{-})(Z \cdot Z) + \frac{1}{2c_{W}^{4}} (Z \cdot Z)^{2} \right\}$$

Considered process (all leptons, including τ):

$$pp
ightarrow jj(ZZ/WW)
ightarrow jj\ell^-\ell^+
u_\ell ar{
u}_\ell$$
 $\sigma pprox 40 \, {
m fb}$

Bkgd.:

- $t\bar{t} \rightarrow WbWb$, $\sigma \approx 52 \, \mathrm{pb}$
- Single t w. misrec. jet: $\sigma \approx$ 4.8 pb
- QCD: $\sigma \approx 0.21 \, \text{pb}$

DESY

Tagging and cuts:

- $\ell\ell jj$ tag, $\eta_{tag}^{min} < \eta_{\ell} < \eta_{tag}^{max}$, veto b
- ▶ $|\Delta \eta_{jj}| >$ 4.4, $M_{jj} >$ 1080 GeV
- Minijet-Veto: $p_{T,j} < 30 \, \text{GeV}$
- ▶ $E_j > 600, 400 \, \text{GeV}, \, p_{T,j}^1 > 60, 24 \, \text{GeV}$

Improves S/\sqrt{B} from 3.3 to 29.7.

2.5 3

|∆¢ (lep* lep') |

6 8 10 |பிர (lep*lep`) |

 $\begin{array}{c} \cdots & \alpha_4 = 0 \ (\text{SM}) \\ \hline & \alpha_4 = 0.003 \\ \hline & \alpha_4 = 0.006 \\ \hline & \alpha_4 = 0.01 \end{array}$

Results:

 $(1\sigma \text{ sensitivity to the } \alpha s)$

Coupl.	ILC (1 ab ⁻¹)	LHC (100fb^{-1})
α_4	0.0088	0.00160
α_5	0.0071	0.00098

Caveat: Results for LHC preliminary...

SY

Results:

$(1\sigma \text{ sensitivity to the } \alpha s)$

Bounds on Λ [TeV]:

		120		
Coupl.	ILC (1 ab^{-1})	LHC (100 fb $^{-1}$)		
α_4	0.0088	0.00160		
α_{5}	0.0071	0.00098		

Caveat: Results for LHC preliminary...

Spin	I = 0	I = 1	I = 2	
0	1.39	1.55	1.95	
1	1.74	2.67	—	
2	3.00	3.01	5.84	C

◊ Next generation event generators for LHC and ILC:

MadGraph, O'Mega/WHiZard, Sherpa, high-level validity check passed for the MSSM

Study of many aspects of BSM pheno possible:

- Signal/Background beyond $2 \rightarrow 2$
- Inclusion of additional hard jets, ISR, FSR
- Systematic inclusion of: Off-shell effects, non-resonant contributions, interferences, spin correlations

Codes are easily extendable:

e.g. Sherpa: RPV, ADD

O'Mega/Whizard: Little Higgs, KK resonances, gravitinos included; NMSSM, leptoquarks, SUSY exotics upcoming,

◊ Next generation event generators for LHC and ILC:

MadGraph, O'Mega/WHiZard, Sherpa, high-level validity check passed for the MSSM

Study of many aspects of BSM pheno possible:

- Signal/Background beyond $2 \rightarrow 2$
- Inclusion of additional hard jets, ISR, FSR
- Systematic inclusion of: Off-shell effects, non-resonant contributions, interferences, spin correlations

Codes are easily extendable:

e.g. Sherpa: RPV, ADD

O'Mega/Whizard: Little Higgs, KK resonances, gravitinos included; NMSSM, leptoquarks, SUSY exotics upcoming,

 Next step: Match higher-order corrections with multi-particle final states (Frixione, Webber: MC@NLO, Kilian/JR/Robens)

◊ Next generation event generators for LHC and ILC:

MadGraph, O'Mega/WHiZard, Sherpa, high-level validity check passed for the MSSM

Study of many aspects of BSM pheno possible:

- Signal/Background beyond $2 \rightarrow 2$
- Inclusion of additional hard jets, ISR, FSR
- Systematic inclusion of: Off-shell effects, non-resonant contributions, interferences, spin correlations

Codes are easily extendable:

e.g. Sherpa: RPV, ADD

O'Mega/Whizard: Little Higgs, KK resonances, gravitinos included; NMSSM, leptoquarks, SUSY exotics upcoming,

