Electromagnetic Structure Functions and Neutrino Nucleon Scattering

Hallsie Reno University of Iowa mary-hall-reno@uiowa.edu

May 16, 2006

Hallsie Reno

Pheno06 Madison

Introduction

• It has been know for a long time that in the few GeV energy region, the quasi-elastic, few pion and inclusive contributions to the cross section are nearly equal.Lipari, Lusignoli and Sartogo, 1995

• All components important to understand neutrino oscillation experiments, the balance of which depends on e.g., the minimum invariant mass of the final hadronic state, W_{\min}^2 . Recent work by Kuzmin, Lyubushkin, Naumov, hepph/0511308 attempts to find the W_{\min} so that the components best represent current neutrino measurements.

- The inelastic component is not currently well calculated in this energy regime because of the necessity of low- Q^2 structure functions.
- This talk is about extrapolations to low- Q^2 of structure functions for $W^2 > W_{\min}^2$ in the inelastic component of $\sigma(\nu N)$.
- I'll assume local quark-hadron duality here meaning that the structure function are averages over the remaining resonances.
- Target mass corrections: work with Stefan Kretzer, Phys. Rev. D66,D69.

Plan

- Brief review neutrino scattering in NLO QCD with target mass corrections (TMC) and the importance of the low- Q^2 contribution to the cross section.
- Comparison of NLO+TMC with a parameterization of F_2^{ep} . (NLO+TMC overestimates F_2 at low Q^2 .)
- The Capella, Kaidalov, Merino and Thanh Van (CKMT) parameterization of F₂^{ep} and the already well studied Bodek-Yang-Park parameterization PRL 82 (1999), hep-ex/0308007, Nucl. Phys. Proc. Suppl. 139 (2005). See also Kulagin and Petti, Nucl. Phys. A 765 (2006).
- The translation to νN scattering.

Mass Corrections

Differential cross section (charged current) M=nucleon mass:

$$\frac{d\sigma}{dx \, dy} = \frac{G_F^2 M E}{\pi (1 + Q^2 / M_W^2)^2} \left[x y^2 F_1^{TMC}(x, Q^2, M^2) + \left(1 - y - \frac{M x y}{2E} \right) F_2^{TMC}(x, Q^2, M^2) + \left(x y - \frac{x y^2}{2} \right) F_3^{TMC}(x, Q^2, M^2) \right]$$

TMC

TMC corrections come from:

• $x \to \xi$ in PDFs with

$$\frac{1}{\xi} = \frac{1}{2x} + \sqrt{\frac{1}{4x^2} + \frac{M^2}{Q^2}} \iff \xi = \frac{2x}{1 + \sqrt{1 + \frac{4M^2x^2}{Q^2}}}$$

- A "mismatch" between quark momentum p and nucleon momentum P: proton momentum $P^2 = M^2$ and incident parton momentum $p^2 = 0$, then $p^+ = \xi P^+$, but $p^- \neq \xi P^-$.
- Including non-collinear partons in the nucleon, with $k_T < M. \ {\rm R.K. \ Ellis \ et}$ al.

DIS CC cross sections

- Neutrino-nucleon CC cross section for $Q^2 > Q^2_{\min}$ normalized to the νN cross section.
- Calculated using NLO+TMC.
- Half the cross section comes from $Q^2 < 1~{\rm GeV^2}.$

$F_2^{ep}, \ Q^2 = 4 \ {\rm GeV}^2$

$F_2^{ep}, \ Q^2 = 0.5 \ { m GeV}^2$

Х

ALLM (solid), data from E665 M. Adams et al., Phys. Rev. D 54 (1996) with $Q^2 = 0.43$, 0.59 GeV² NLO+TMC, NNLO+TMC.

Capella, Kaidalov, Merino and Thanh Van

CKMT, Phys. Lett. B 337, 358 (1994), Moriond 1994, 7 parameters in

$$F_{2}(x,Q^{2}) = F_{2}^{sea}(x,Q^{2}) + F_{2}^{val}(x,Q^{2})$$

$$= Ax^{-\Delta(Q^{2})}(1-x)^{n(Q^{2})+4} \left(\frac{Q^{2}}{Q^{2}+a}\right)^{1+\Delta(Q^{2})}$$

$$+ Bx^{1-\alpha_{R}}(1-x)^{n(Q^{2})} \left(\frac{Q^{2}}{Q^{2}+b}\right)^{\alpha_{R}}$$

$$\times \left(1+f(1-x)\right)$$

CKMT Valence in *ep* **scattering**

CKMT fit $\alpha_R = 0.4250$ and b = 0.6452 GeV².

$$F_2^{val}(x,Q^2) = Bx^{1-\alpha_R}(1-x)^{n(Q^2)} \left(\frac{Q^2}{Q^2+b}\right)^{\alpha_R} \left(1+f(1-x)\right)$$

 $B = B_u$ is calculated to be 1.2064, $f = B_d/B_u = 0.15$ is also calculated. They are calculated invoking valence counting rules at $Q^2 = 2$ GeV². Also fit is c = 3.5489 GeV² in

$$n(Q^2) = \frac{3}{2} \left(1 + \frac{Q^2}{Q^2 + c} \right)$$

CKMT "Sea" in *ep* **scattering**

CKMT fit A = 0.1502 and a = 0.2631 GeV².

$$F_2^{sea}(x,Q^2) = Ax^{-\Delta(Q^2)}(1-x)^{n(Q^2)+4} \left(\frac{Q^2}{Q^2+a}\right)^{1+\Delta(Q^2)}$$

Also fit is $\Delta_0 = 0.07684$ and d = 1.1170 GeV² in

$$\Delta(Q^2) = \Delta_0 \left(1 + \frac{2Q^2}{Q^2 + d} \right)$$

 Δ_0 is similar to power law in generalized vector meson dominance at low Q^2 , where it is pomeron dominated.

Comparison: ALLM and CKMT in *ep* **scattering**

CKMT in νN scattering

See CKMT Moriond Proceedings.

- F_2^{sea} changes only overall normalization: $A \rightarrow A_{\nu} = 0.60$, which I fixed at $Q^2 = 10$ GeV² to match reasonably well with the NLO+TMC evaluation.
- For the valence part, recalculate B and f at $Q^2 = 2 \text{ GeV}^2$. I get

$$B_{\nu} = 2.695$$
 $f_{\nu} = 0.595$

• For F_1 , use a parameterization of R (Whitlow et al., Phys. Lett. 1990) to convert F_2 . Modify F_2 form to fit F_3 (overall normalization, change A).

Comparison: BYP and CKMT in νN scattering

Bodek-Yang-Park (BYP) (solid) extraction of the flavor components of "effective PDFs", and CKMT (dashed).

Х

Strategy for cross sections

- Use NLO+TMC in for $Q^2 > Q_0^2$. Attach a parameterization for $Q^2 < Q_0^2$.
- Results shown for $Q_0^2 = 4 \text{ GeV}^2$, not very sensitive to this specific choice.

νN CC cross section

- Solid lines, $W_{\min}^2 = 4 \text{ GeV}^2$, dashed lines for $W_{\min}^2 = 2 \text{ GeV}^2$.
- Upper solid and dashed are NLO+TMC, lower two are CKMT and BYP extrapolations below Q_0^2 .
- Dotted lines show LO+TMC.

$\bar{\nu}N$ CC cross section

- Solid lines, $W_{\min}^2 = 4 \text{ GeV}^2$, dashed lines for $W_{\min}^2 = 2 \text{ GeV}^2$.
- Upper solid and dashed are NLO+TMC, lower two are CKMT and BYP extrapolations below Q_0^2 .
- Dotted lines show LO+TMC.

Summary

- The CKMT and BYP extrapolations yield similar results on the cross sections. CKMT is slightly larger. Gives support to BYP results for $\sigma(\nu N)$.
- The neutrino cross section is reduced by 7-8% for $W_{\min}^2 = 2 \text{ GeV}^2$ at 10 GeV, 11-13% at 5 GeV, relative to the NLO+TMC result.
- Antineutrino scattering is impacted more, with changes of order 20% at 10 GeV. (Lower Q^2 emphasized because of $(1-y)^2$ factor with valence PDFs.)
- CKMT parameterization has a simple interpretation. One can rescale the standard sea and valence PDFs by the same Q^2 dependent factors in the CKMT parameterization and get essentially the same results.