Search for Lepton-number Violating Processes

Pheno 2006 Anupama Atre

Neutrinos are massive

 $\begin{array}{rll} 1.9\times 10^{-3}~{\rm eV}^2 < ~\Delta m^2_{atm} ~< 3.0\times 10^{-3}~{\rm eV}^2 \\ 7\times 10^{-5}~{\rm eV}^2 < ~\Delta m^2_{sol} ~< 9\times 10^{-5}~{\rm eV}^2. \end{array}$

We also know

• There are only three "active" light neutrinos $N_v = 2.984 \pm 0.008$, from Z pole at LEP-1.

• Direct lab bound: $m_{\beta} < 2.2 \text{ eV}$ from Tritium beta decay

 Σ mv_i < 0.17 - 1 eV from WMAP, SDSS (Lyα spectra), SNIa.

 The absence of neutrinoless double beta decay bound on Majorana mass <m> ee < 1 eV Absolute mass scale ?

$$\Sigma = m_1 + m_2 + m_3 \qquad \begin{aligned} \delta m_a^2 &= m_3^2 - m_1^2 \\ \delta m_s^2 &= m_2^2 - m_1^2 \end{aligned}$$

Hierarchy - inverted or normal?

• Dirac or Majorana?

Neutrinos masses: Dirac versus Majorana

Simplest extension of the SM:

$$L_{aL} = \begin{pmatrix} \nu_a \\ l_a \end{pmatrix}_L, \ a = 1, 2, 3; \ N_{bR}, \ b = 1, 2, 3.$$

Gauge-invariant Yukawa interactions

$$-\mathcal{L}_Y = \sum_{a=1}^{3} \sum_{b=1}^{n} f_{ab}^{\nu} \overline{L_{aL}} \widehat{H} N_{bR} + h.c.$$

$$\Rightarrow \sum_{a=1}^{3} \sum_{b=1}^{n} \overline{\nu_{aL}} m_{ab}^{\nu} N_{bR} + h.c.$$

lead to three generations of Dirac neutrinos.

If there are Majorana mass terms:

$$\sum_{b,b'=1}^{n} \overline{N^{c}}_{bL} B_{bb'} N_{b'R} + h.c.$$

then The full neutrino mass terms read

$$\frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{N^c}_L \end{pmatrix} \begin{pmatrix} 0_{3\times3} & m^{\nu}_{3\times n} \\ m^{\nu T}_{n\times3} & B_{n\times n} \end{pmatrix} \begin{pmatrix} \nu^c_R \\ N_R \end{pmatrix} + h.c.$$

The diagonalized masses read

$$-\mathcal{L}_{m}^{\nu} = \frac{1}{2} \left(\sum_{m=1}^{3} m_{m}^{\nu} \,\overline{\nu_{mL}} \,\nu_{mR}^{c} + \sum_{m'=4}^{3+n} M_{m'}^{N} \,\overline{N_{m'L}^{c}} \,N_{m'R} \right) + h.c.$$

All Majorana neutrinos:

$$\nu_{aL} = \sum_{m=1}^{3} U_{am} \nu_{mL} + \sum_{m'=4}^{3+n} V_{am'} N_{m'L}^{c},$$

$$N_{bR} = \sum_{m=1}^{3} X_{bm}^{*} \nu_{mR}^{c} + \sum_{m'=4}^{3+n} Y_{bm'}^{*} N_{m'R},$$

$$UU^{\dagger} + VV^{\dagger} = I, \quad XX^{\dagger} + YY^{\dagger} = I,$$

Charged current and Neutral current

$$\begin{split} -\mathcal{L} &= \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m=1}^{3} (U^{\dagger}O_{L})_{m\ell} \bar{\nu}_{m} \gamma^{\mu} P_{L} \ell + \text{h.c.} \\ &+ \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{n} (V^{\dagger}O_{L})_{m'\ell} \bar{N}_{m'}^{c} \gamma^{\mu} P_{L} \ell + \text{h.c.} \\ &+ \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{3} \sum_{m_{1}=1}^{n} (U^{\dagger}V)_{m_{1},m_{2}'} \bar{\nu}_{m_{1}} \gamma^{\mu} P_{L} N_{m_{2}'}^{c} + \text{h.c.} \\ &+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m_{1}=1}^{3} \sum_{m_{2}=4}^{n} (U^{\dagger}V)_{m_{1},m_{2}'} \bar{\nu}_{m_{1}} \gamma^{\mu} P_{L} \nu_{m_{2}} + \text{h.c.} \\ &+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m_{1}=1}^{3} \sum_{m_{2}=1}^{3} (U^{\dagger}U)_{m_{1},m_{2}} \bar{\nu}_{m_{1}} \gamma^{\mu} P_{L} \nu_{m_{2}} + \text{h.c.} \\ &+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m_{1}'=1}^{3} \sum_{m_{2}'=4}^{n} (V^{\dagger}V)_{m_{1}',m_{2}'} \bar{N}_{m_{1}'}^{c} \gamma^{\mu} P_{L} N_{m_{2}'}^{c} + \text{h.c.} \\ &+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m_{1}'=1}^{3} \sum_{m_{2}'=4}^{n} (V^{\dagger}V)_{m_{1}',m_{2}'} \bar{N}_{m_{1}'}^{c} \gamma^{\mu} P_{L} N_{m_{2}'}^{c} + \text{h.c.} \\ &U^{\ell\nu} = O_{L}^{\dagger} U, V^{\ell N} = O_{L}^{\dagger} V, U^{\nu N} = V^{\dagger} U, U^{\nu\nu} = UU^{\dagger}, V^{NN} = VV^{\dagger} \end{split}$$

∆L = 2 process → Majorana nature of neutrino

The transition rates are proportional to:

• for light neutrino [1]

generic diagram

[1] AA, V Barger, T Han, Phys. Rev. D 71, 113014 (2005) [arXiv:hep-ph/0502163]
[2] AA, T Han, S Pascoli to appear
[3] T Han, B Zhang [arXiv:hep-ph/0604064] AA, T Han, S pascoli, B Zhang to appear
$$\begin{split} \langle m \rangle_{\ell_{1}\ell_{2}}^{2} &= |\sum_{i} U_{\ell_{1}i}^{\ell\nu} U_{\ell_{2}i}^{\ell\nu} m_{i}|^{2} \\ \cdot \text{ for intermediate mass neutrino}^{[2]} \\ &\propto \frac{|V_{\ell_{1}4}^{\ell N} V_{\ell_{2}4}^{\ell N}|^{2}}{\Gamma_{\nu_{4}} m_{4}} \\ \cdot \text{ for heavy neutrino}^{[3]} \\ &\left\langle m^{-1} \right\rangle_{\ell_{1}\ell_{2}}^{2} &= \frac{|\sum_{i} V_{\ell_{1}i}^{\ell N} V_{\ell_{2}i}^{\ell N}|^{2}}{m_{N}^{2}} \end{split}$$

Light (active) Majorana neutrino

 $\propto \langle m \rangle_{\ell_1 \ell_2}^2 = |\sum_i U_{\ell_1 i}^{\ell \nu} U_{\ell_2 i}^{\ell \nu} m_i|^2$

We have six effective neutrino masses

 $\langle m \rangle_{ee} : Ov\beta\beta$, rare meson decay $\langle m \rangle_{e\pi}$ $\langle m \rangle_{e\mu} : \mu^{\tau} e^{\tau}$ conversion, rare meson decay $\langle m \rangle_{\mu}$ $\langle m \rangle_{\mu\mu}$: rare meson decay $\langle m \rangle_{\tau}$

 $\langle m
angle_{e au}$: au decay

 $\langle m
angle_{\mu au}$: au decay

 $\langle m
angle_{\mathcal{T}\mathcal{T}}$: none

Determination of effective neutrino masses

$\langle m \rangle_{\ell_1 \ell_2}^2 =$	$ \sum_{i}U_{\ell_{1}i}^{\ell u}U_{\ell_{2}i}^{\ell u}m_{i} $	2
	\imath	

- 3 masses: m_1 , m_2 and m_3
- $\Sigma = m_1 + m_2 + m_3$ and δm_a^2 and δm_s^2
- 3 mixing angles: θ_{ar} , θ_{s} and θ_{x}
- 3 phases: δ , ϕ_2 and ϕ_3

rameter	Input
$\left \delta m_a^2\right $	1.9×10⁻³ eV² - 3.0×10⁻³ eV²
$\left \delta m_{s}^{2}\right $	90% CL δm_s^2 vs $tan^2\theta_s$ plot
θ_a	90% CL δm_a^2 vs sin ² 2 θ_a plot
θ_{s}	90%CL δm_s^2 vs tan ² θ_s plot
θ_{x}	90% CL CHOOZ exclusion plot
δ	Ο το 2π
<i>\$</i> 2	Ο το 2π
ϕ_3	Ο το 2π
Σ	0.42 eV at 95% CL

AA, V Barger, T Han, Phys. Rev. D 71, 113014 (2005) [arXiv:hep-ph/0502163]

Neutrinoless Double Beta Decay (Ονββ)

$(A,Z) \to (A,Z+2) + e^- + e^-$

$$[T_{\frac{1}{2}}]^{-1} = G(\Delta E) |\mathcal{M}_{nucl}|^2 \langle m \rangle_{ee}^2$$

 $\langle m \rangle_{ee}^{max}$ = 0.14 (0.06) eV

Isotope	Half-life (yrs)	$\langle m angle_{ee}$ (eV)	Year
⁴⁸ Ca	> 1.4 × 10 ²²	<7.2 - 44.7	2004
⁷⁶ Ge	> 1.9 × 10 ²⁵	<0.35	2001
⁷⁶ Ge	> 1.6 × 10 ²⁵	<0.33 - 1.35	2002
⁷⁶ Ge	= 1.2 × 10 ²⁵	= 0.44	2004
⁸² Se	> 2.7 × 10 ²²	<5	1992
¹⁰⁰ Mo	> 5.5 × 10 ²²	×2.1	2001
¹¹⁶ Cd	→ 1.7 × 10 ²³	<1.7	2003
¹²⁸ Te	→ 7.7 × 10 ²⁴	<1.1 - 1.5	1993
¹³⁰ Te	> 5.5 × 10 ²³	<0.37 - 1.9	2004
¹³⁶ Xe	> 4.4 × 10 ²³	<1.8 - 5.2	1998
¹⁵⁰ Nd	> 1.2 × 10 ²¹	∕ ≺ 3.0	1997

S.R. Elliott and J. Engel, J. Physics G30 (2004) R183, [arXiv:hep-ph/0405078]

Lepton Number Violating Tau Decays

$$\tau^- \to \ell^+ + M_1^- + M_2^-$$

Decay Mode	B _{exp}	$\langle m angle_{\ell au}$
$\tau^- \rightarrow e^+ \pi^- \pi^-$	1.9 × 10 ⁻⁶	12 TeV
$\tau^{-} \rightarrow e^{+} \pi^{-} K^{-}$	2.1 × 10 ⁻⁶	46 TeV
$\tau^- \rightarrow e^+ \ \mathrm{K}^- \ \mathrm{K}^-$	3.8 × 10 ⁻⁶	730 TeV
$\tau^- \rightarrow \mu^+ \pi^- \pi^-$	3.4 × 10 ⁻⁶	20 TeV
$\tau^{-} \rightarrow \mu^{+} \pi^{-} K^{-}$	7.0 × 10 ⁻⁶	100 TeV
$\tau^- ightarrow \mu^+ \ \mathrm{K}^- \ \mathrm{K}^-$	6.0 × 10 ⁻⁶	1000 TeV

CLEO Collaboration, D.Bliss et al., Phys. Rev. D 57 (1998) 5903, [arXiv:hep-ex/9712010]

$$B \approx 10^{-33} |V_{M_1}^{CKM} V_{M_2}^{CKM}|^2 \Big(\frac{f_{M_1}^2 f_{M_2}^2}{(100MeV)^2}\Big)^2 \Big(\frac{1777MeV}{m_\tau}\Big)^2 \Big(\frac{\langle m \rangle_{\ell\tau}}{1eV}\Big)^2 \Phi$$

<u>Rare Meson Decays</u>	$M_1^+ \to M_2^- + \ell_1^+ + \ell_2^+$
$B \approx 10^{-29} V_{M_1}^{CKM} V_{M_2}^{CKM} ^2 \left(\frac{\tau_{M_1}}{1.0 \times 10^{-10}}\right)^{-10}$	$\frac{f_{M_1}^2 f_{M_2}^2}{(100MeV)^2} \Big)^2 \Big(\frac{m_{M_1}}{1GeV}\Big)^3 \Big(\frac{\langle m \rangle_{\ell_1 \ell_2}}{1eV}\Big)^2 \Phi'$

	ℓ_1^+
\bar{q}_2 ν	ℓ_2^+
	M_2
	<u> </u>

Decay Mode	B _{exp}	$\langle m angle_{\ell_1 \ell_2}$ TeV
$D^+ \rightarrow \pi^- e^+ e^+$	9.6 × 10 ⁻⁵	320
$D^{*} \rightarrow \pi^{-} \mu^{+} \mu^{+}$	4.8 × 10 ⁻⁶	76
$D^{*} \rightarrow \pi^{-} e^{+} \mu^{+}$	5.0 × 10 ⁻⁵	170
$D_{s}^{+} \rightarrow \pi^{-} e^{+} e^{+}$	6.9 × 10 ⁻⁴	200
$D_{s^{+}}^{+} \to \pi^{-} \mu^{+} \mu^{+}$	2.9 × 10 ⁻⁵	42
$D_{s}^{+} \rightarrow \pi^{-} e^{+} \mu^{+}$	7.3 × 10 ⁻⁴	150
$B^+ \rightarrow \pi^- e^+ e^+$	1.6 × 10 ⁻⁶	420
$B^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}$	1.4 × 10 ⁻⁶	400
$B^{+} \rightarrow \pi^{-} e^{+} \mu^{+}$	1.3 × 10 ⁻⁶	🟸 270 Апир

Decay Mode	B _{exp}	$\langle m angle_{\ell_1 \ell_2} { m TeV}$
$D^* \rightarrow K^- e^+ e^+$	1.2 × 10 ⁻⁴	1900
$D^* \rightarrow K^- \mu^* \mu^*$	1.3 × 10 ⁻⁵	670
$D^* \rightarrow K^- e^* \mu^*$	1.3 × 10 ⁻⁴	1500
$D_{s}^{+} \to K^{-} e^{+} e^{+}$	6.3 × 10 ⁻⁴	990
$D_{s}^{+} \rightarrow K^{-} \mu^{+} \mu^{+}$	1.3 × 10 ⁻⁵	150
$D_{s}^{+} \rightarrow K^{-} e^{+} \mu^{+}$	6.8 × 10 ⁻⁴	740
$B^{*} \rightarrow K^{-} e^{*} e^{*}$	1.0 × 10 ⁻⁶	1300
$B^{*} \rightarrow K^{-} \mu^{*} \mu^{*}$	1.8 × 10 ⁻⁶	1800
$B^{*} \rightarrow K^{-} e^{*} \mu^{*}$	2.0 × 10 ⁻⁶	1300

$K^{\scriptscriptstyle +} o \pi^{\scriptscriptstyle -} e^{\scriptscriptstyle +} e^{\scriptscriptstyle +}$	6.4 × 10 ⁻¹⁰	0.11
$K^{\star} \rightarrow \pi^{-} \mu^{+} \mu^{+}$	3.0 × 10 ⁻⁹	0.48
$K^{+} \rightarrow \pi^{-} e^{+} \mu^{+}$	5.0 × 10 ⁻¹⁰	0.09

Muon - Positron Conversion

$$\mu^{-} + (A, Z) \to (A, Z - 2) + e^{+}$$

 $B = \lambda \left(\frac{\langle m \rangle_{e\mu}}{m_e}\right)^2$

 $\langle m
angle_{e\mu} \leq$ 17(82) MeV

K. Zuber, [arXiv:hep-ph/0008080]

$$B = \frac{\Gamma(Ti + \mu^{-} \to e^{+} + Ca_{gs})}{\Gamma(Ti + \mu^{-} \to \nu_{\mu} + Sc)} < 1.7 \times 10^{-12}$$

SINDRUM II Collaboration, J. Kaulard et al., Phys. Lett. B 422 (1998) 334

<u>Summary</u>

$\langle m angle_{\ell_1 \ell_2}$	Cosmo Bounds	Exp Bounds	Experiment
$\langle m angle_{ee}$	0.14 (0.06) eV	0.33 eV	Ονββ
$\langle m angle_{e\mu}$	0.14 (0.06) eV	17 MeV*	$\mu^ e^+$ conversion
$\langle m angle_{e au}$	0.14 (0.06) eV	12 TeV	$\tau^- \rightarrow e^+ \pi^- \pi^-$
$\langle m angle_{\mu\mu}$	0.14 (0.06) eV	480 GeV	$K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}$
$\langle m angle_{\mu au}$	0.14 (0.06) eV	19 TeV	$\tau^- \rightarrow \mu^+ \pi^- \pi^-$
$\langle m \rangle_{ au au}$	0.14 (0.06) eV	none	$B^- \rightarrow M^- \tau^+ \tau^+$

* 90 GeV from $K^{+} \rightarrow \pi^{-} e^{+} \mu^{+}$

Intermediate mass Majorana neutrino *

$$-\mathcal{L} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m=1}^{3} (U^{\dagger}O_{L})_{m\ell} \bar{\nu}_{m} \gamma^{\mu} P_{L} \ell + \text{h.c.}$$

$$+ \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{n} (V^{\dagger}O_{L})_{m'\ell} \bar{N}_{m'}^{c} \gamma^{\mu} P_{L} \ell + \text{h.c.}$$

$$+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m_{1}=1}^{3} \sum_{m'_{2}=4}^{n} (U^{\dagger}V)_{m_{1},m'_{2}} \bar{\nu}_{m_{1}} \gamma^{\mu} P_{L} N_{m'_{2}}^{c} + \text{h.c.}$$

$$+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m_{1}=1}^{3} \sum_{m'_{2}=4}^{3} (U^{\dagger}V)_{m_{1},m'_{2}} \bar{\nu}_{m_{1}} \gamma^{\mu} P_{L} \nu_{m_{2}} + \text{h.c.}$$

$$+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m'_{1}=1}^{3} \sum_{m'_{2}=4}^{n} (V^{\dagger}V)_{m'_{1},m'_{2}} \bar{N}_{m'_{1}}^{c} \gamma^{\mu} P_{L} N_{m'_{2}}^{c} + \text{h.c.}$$

$$+ \frac{g}{2cos\theta_{W}} Z_{\mu} \sum_{m'_{1}=1}^{3} \sum_{m'_{2}=4}^{n} (V^{\dagger}V)_{m'_{1},m'_{2}} \bar{N}_{m'_{1}}^{c} \gamma^{\mu} P_{L} N_{m'_{2}}^{c} + \text{h.c.}$$

$$U^{\ell\nu} = O_L^{\dagger} U, V^{\ell N} = O_L^{\dagger} V, U^{\nu N} = V^{\dagger} U, U^{\nu\nu} = UU^{\dagger}, V^{NN} = VV$$

• resonant enhancement, transition rates \propto -

$$\Gamma_{\nu_4}m_4$$

 $|V_{\ell_1 4}^{\ell N} V_{\ell_2 4}^{\ell N}|^2$

• tau decay, rare meson decay

* AA, T Han and S Pascoli, to appear Anupama Atre

17

Width of Intermediate mass Majorana neutrino

$$U^{\ell\nu} = O_L^{\dagger} U, V^{\ell N} = O_L^{\dagger} V, U^{\nu N} = V^{\dagger} U, U^{\nu\nu} = UU^{\dagger}, V^{NN} = VV^{\dagger}$$

2 body decays :

• CC decays $\rightarrow \ell^- P^+, \ell^- V^+ \propto \frac{G_F^2}{16\pi} f_M^2 m_4^3 |V_{\ell 4}^{\ell N}|^2$

• *NC decays*
$$\rightarrow \nu_i P^0, \nu_i V^0 \propto \frac{G_F^2}{\lambda \pi} f_M^2 m_4^3 \sum_{\ell_1 = e}^{\tau} |V_{\ell_1 4}^{\ell N}|^2 (1 - \sum_{\ell_2 = e}^{\tau} |V_{\ell_2 4}^{\ell N}|^2)$$

3 body decays:

• CC decays
$$\rightarrow \nu_i \ell_1^- \ell_2^+ \propto \frac{G_F^2}{192\pi^3} m_4^5 |V_{\ell_1 4}^{\ell N}|^2 (1 - |V_{\ell_2 4}^{\ell N}|^2)$$

• *NC decays*
$$\rightarrow \nu_i \nu_j \bar{\nu}_j \propto \frac{G_F^2}{192\pi^3} m_4^5 \sum_{\ell_1=e}^{\tau} |V_{\ell_1 4}^{\ell N}|^2 (1 - \sum_{\ell_2=e}^{\tau} |V_{\ell_2 4}^{\ell N}|^2)$$

• CC + NC decays $\rightarrow \nu_i \ell^- \ell^+ \propto$ combination of CC + NC mixings

TABLE I: Mass and mixing elements of sterile neutrino probed and the decay mode constraining them with the corresponding experimental bounds on branching fractions. Bounds for $\Delta L = 2$ tau decays are from Ref. [82] and rare meson decays are from Ref. [83]. The bounds for $D^+ \rightarrow e^+e^+\pi^-(K^-)$ are from [84].

Mixing element	range of $m_4(MeV)$	decay mode	Bexp
$ V_{e4} ^2$	140 - 493	$K^+ \to e^+ e^+ \pi^-$	6.4×10^{-10}
	140 - 1868	$D^+ \rightarrow e + e^+ \pi^-$	$3.6 imes 10^{-6}$
	494 - 1868	$D^+ \rightarrow e^+ e^+ K^-$	4.5×10^{-6}
	140 - 1967	$D_s^+ \rightarrow e^+ e^+ \pi^-$	$6.9 imes 10^{-4}$
	494 - 1967	$D_s^+ \rightarrow e^+ e^+ K^-$	$6.3 imes 10^{-4}$
	140 - 5278	$B^+ ightarrow e^+ e^+ \pi^-$	$1.6 imes 10^{-6}$
	494 - 5278	$B^+ \rightarrow e^+ e^+ K^-$	1.0×10^{-6}
	776 - 5278	$B^+ \rightarrow e^+ e^+ \rho^-$	$2.6 imes 10^{-6}$
	892 - 5278	$B^+ \to e^+ e^+ K^{*-}$	$2.8 imes 10^{-6}$
$ V_{\mu 4} ^2$	245 - 388	$K^+ ightarrow \mu^+ \mu^+ \pi^-$	$3.0 imes 10^{-9}$
	245 - 1763	$D^+ \rightarrow \mu^+ \mu^+ \pi^-$	4.8×10^{-6}
	599 - 1763	$D^+ \rightarrow \mu^+ \mu^+ K^-$	$1.3 imes 10^{-5}$
	881 - 1763	$D^+ \rightarrow \mu^+ \mu^+ \rho^-$	5.6×10^{-4}
	997 - 1763	$D^+ \rightarrow \mu^+ \mu^+ K^{*-}$	$8.5 imes 10^{-4}$
	245 - 1862	$D_s^+ \rightarrow \mu^+ \mu^+ \pi^-$	$2.9 imes 10^{-5}$
	599 - 1862	$D_s^+ \rightarrow \mu^+ \mu^+ K^-$	1.3×10^{-5}
	997 - 1862	$D^+_s \rightarrow \mu^+ \mu^+ K^{*-}$	1.4×10^{-3}
	245 - 5173	$B^+ \rightarrow \mu^+ \mu^+ \pi^-$	1.4×10^{-6}
	599 - 5173	$B^+ \rightarrow \mu^+ \mu^+ K^-$	1.8×10^{-6}
	881 - 5173	$B^+ \rightarrow \mu^+ \mu^+ \rho^-$	5.0×10^{-6}
	997 - 5173	$B^+ \rightarrow \mu^+ \mu^+ K^{*-}$	$8.3 imes 10^{-6}$
$ V_{e4}V_{\mu4} $	140 - 493	$K^+ \rightarrow e^+ \mu^+ \pi^-$	5.5×10^{-10}
	140 - 1868	$D^+ \rightarrow e^+ \mu^+ \pi^-$	5.0×10^{-5}
	494 - 1868	$D^+ \rightarrow e^+ \mu^+ K^-$	$1.3 imes 10^{-4}$
	140 - 1862	$D_s^+ ightarrow e^+ \mu^+ \pi^-$	$7.3 imes 10^{-4}$
	494 - 1967	$D_s^+ \rightarrow e^+ \mu^+ K^-$	6.8×10^{-4}
	140 - 5278	$B^+ \rightarrow e^+ \mu^+ \pi^-$	$1.3 imes 10^{-6}$
	494 - 5278	$B^+ \rightarrow e^+ \mu^+ K^-$	2.0×10^{-6}
	776 - 5278	$B^+ \rightarrow e^+ \mu^+ \rho^-$	$3.3 imes 10^{-6}$
	892 - 5278	$B^+ \rightarrow e^+ \mu^+ K^{*-}$	4.4×10^{-6}
$ V_{e4}V_{\tau 4} $	140 - 1637	$\tau^- ightarrow e^+ \pi^- \pi^-$	$2.7 imes 10^{-7}$
	140 - 1637	$\tau^- \rightarrow e^+ \pi^- K^-$	1.8×10^{-7}
	494 - 1283	$\tau^- \rightarrow e^+ K^- K^-$	1.5×10^{-7}
$ V_{\mu 4}V_{\tau 4} $	245 - 1637	$\tau^- \rightarrow \mu^+ \pi^- \pi^-$	0.7×10^{-7}
	245 - 1637	$\tau^- \rightarrow \mu^+ \pi^- K^-$	2.2×10^{-7}
	599 - 1283	$\tau^- \rightarrow \mu^+ K^- K^-$	4.8×10^{-7}

36 decay modes to look for lepton number violation !!!!

Parameters for MC sampling

- mass of neutrino m₄
 resonant mass region
- three mixings ~ 0 to 1

- It is of fundamental importance to verify Majorana nature of neutrinos
- We look for genuine $\Delta L = 2$ processes
- For the three active v's $0v\beta\beta$ is the best hope
- For a sterile neutrino N (or v₄)
 - Rare τ and meson decays are sensitive to

140 MeV < m_4 < 5 GeV, 10⁻⁹ < $|V_{14}|^2$ < 10⁻²

- Depending on the unknown mixing and mass v_{4} can show up in any channel
- Other processes to look for $B^+ \rightarrow e^+ \tau^+ M^-, B^+ \rightarrow \mu^+ \tau^+ M^-, B^+ \rightarrow \tau^+ \tau^+ M^-$

Thank You !!!!!