Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Radovan Dermíšek

Institute for Advanced Study, Princeton

R.D. and J. F. Gunion, hep-ph/0502105

R.D. and J. F. Gunion, hep-ph/0510322

EWSB in MSSM

Minimum of the Higgs potential:

tan

$$\frac{1}{2}m_Z^2 = -\mu^2 + \frac{m_{H_d}^2 - \tan^2\beta m_{H_u}^2}{\tan^2\beta - 1}, \quad \tan\beta = \frac{v_u}{v_d}$$
$$\beta = 10:$$
$$m_Z^2 \simeq -2.0 \ \mu^2(0) + 5.9 \ M_3^2(0) + 0.8 \ m_Q^2(0) + 0.6 \ m_u^2$$

$$-1.2 \ m_{H_u}^2(0) \ - \ 0.7 \ M_3(0) A_t(0) + \dots$$

Without specific relations between SSB parameters and/or μ :

$$m_Z \sim M_3(0), \ m_Q(0), \ m_u(0) \sim m_{\tilde{g}}, \ m_{\tilde{t}}$$

natural EWSB \rightarrow light gluino and stop!

(0)

Higgs Mass in MSSM

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right) + \dots$$

$$m_h^2 \simeq (91 \text{GeV})^2 + (38 \text{GeV})^2 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

LEP limit: $m_h \gtrsim 115$ GeV

LHWG-Note 2004-01

Higgs Mass in MSSM

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right) + \dots$$

$$m_h^2 \simeq (91 \text{GeV})^2 + (38 \text{GeV})^2 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

LEP limit: $m_h \gtrsim 115$ GeV

 $m_{\tilde{t}_1} m_{\tilde{t}_2} \gtrsim (900 \,{
m GeV})^2$

 $LEP \rightarrow heavy stop!$

Natural EWSB in NMSSM - p.3/19

Little Hierarchy Problem in MSSM

 $+ m_h < 115 \text{ GeV}$ $\times m_h > 115 \text{ GeV}$

 $M_1(m_Z) = 100 \text{ GeV}$ $M_2(m_Z) = 200 \text{ GeV}$ $M_3(m_Z) = 300 \text{ GeV}$ an eta = 10

other SSB parameters randomly generated

$$\begin{split} m_Z^2 &= \frac{1}{2}(g_2^2 + g'^2)(v_u^2 + v_d^2) \\ v_u &= v_u(a), \, v_d = v_d(a) \end{split}$$

 $p \in \{M_i(0), i = 1, 2, 3; m_s^2(0), s = Q, u, d, L, e, H_u, H_d; A_t(0), \mu(0), B_\mu(0)\}$

Little Hierarchy Problem in MSSM

Large A_t :

 $\mathcal{L}^{SSB} \supset \lambda_t A_t \tilde{Q} \tilde{\bar{u}} H_u$

NMSSM - brief review

MSSM + one additional singlet superfield (results in one CP-even and one CP-odd neutral Higgs bosons, and one additional neutralino):

$$W = W_{MSSM} + \lambda \ \widehat{S}\widehat{H}_u\widehat{H}_d + \frac{\kappa}{3} \ \widehat{S}^3$$

$$\mathcal{L}^{SSB} = \mathcal{L}^{SSB}_{MSSM} + \lambda A_{\lambda} SH_u H_d + \frac{\kappa}{3} A_{\kappa} S^3 + m_S^2 SS^*$$
$$\tan \beta = \frac{v_u}{v_d}, \quad \mu_{eff} = \lambda s$$
$$m_Z^2 = \frac{1}{2} (g_2^2 + g'^2) (v_u^2 + v_d^2)$$

 $m_{H_u}^2$, $m_{H_d}^2$, m_S^2 determined by 3 minimization eqs. of the scalar potential Higgs mass at tree level:

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + m_Z^2 \frac{2\lambda^2}{g_2^2 + g'^2} \sin^2 2\beta$$

 $\tan \beta = 10, \ M_3(M_Z) = 300 \ \text{GeV}$

F

 $\tan \beta = 10, \ M_3(M_Z) = 300 \ {\rm GeV}$

Natural EWSB in NMSSM - p.7/19

 $\tan \beta = 10, \ M_3(M_Z) = 300 \ \text{GeV}$

Precision electroweak data

Precision electroweak data

Search for the SM Higgs at LEP

LHWG-2003-011

Search for the SM Higgs at LEP

LHWG-2003-011

Explaining $m_h \sim 100 \text{ GeV}$ excess

m_{h_1}/m_{a_1}	Branching Ratios			n_{obs}/n_{exp}	s95	N_{SD}^{LHC}	100
(GeV)	$h_1 \to b\bar{b}$	$h_1 \rightarrow a_1 a_1$	$a_1 \to \tau^+ \tau^-$	units of 1σ			
98.0/2.6	0.062	0.926	0.000	2.25/1.72	2.79	1.2	80
100.0/9.3	0.075	0.910	0.852	1.98/1.88	2.40	1.5	60
100.2/3.1	0.141	0.832	0.000	2.26/2.78	1.31	2.5	F
102.0/7.3	0.095	0.887	0.923	1.44/2.08	1.58	1.6	40
102.2/3.6	0.177	0.789	0.814	1.80/3.12	1.03	3.3	
102.4/9.0	0.173	0.793	0.875	1.79/3.03	1.07	3.6	20
102.5/5.4	0.128	0.848	0.938	1.64/2.46	1.24	2.4	
105.0/5.3	0.062	0.926	0.938	1.11/1.52	2.74	1.2	

 $n_{obs} = (1 - CL_b)_{observed}$ $n_{exp} = (1 - CL_b)_{expected}$ thanks to P. Bechtle, LHWG

$$C_{eff}^{2b} = [g_{ZZh}^2 / g_{ZZh_{SM}}^2] B(h \to b\bar{b})$$

 V_{NMSSM} has $U(1)_R$ symmetry in the limit $A_{\lambda}, A_{\kappa} \rightarrow 0$ B. A. Dobrescu and K. T. Matchev, hep-ph/0008192

Superpotential is $U(1)_R$ invariant for $R_S = 1/2 \; R_{H_u H_d}$:

$$W = W_{MSSM} + \lambda \ \widehat{S}\widehat{H}_u\widehat{H}_d + \frac{\kappa}{3} \ \widehat{S}^3$$

 $U(1)_R$ spontaneously broken by v_u , v_d , $s \longrightarrow \mathsf{NG}$ boson! A_{λ} , A_{κ} explicitely break $U(1)_R$:

$$\mathcal{L}^{SSB} = \mathcal{L}^{SSB}_{MSSM} + \lambda A_{\lambda} S H_u H_d + \frac{\kappa}{3} A_{\kappa} S^3 + m_S^2 S S^*$$
$$m_{a_1} \propto A_{\kappa}, \ A_{\lambda}$$

 $U(1)_R$ also broken by gaugino masses (effect at 1-loop level)

 V_{NMSSM} has $U(1)_R$ symmetry in the limit $A_{\lambda}, A_{\kappa} \to 0$ B. A. Dobrescu and K. T. Matchev, hep-ph/0008192

$$m_{a_1}^2 \simeq 3s \left(\kappa A_{\kappa} \sin^2 \theta_A + \frac{3\lambda A_{\lambda} \cos^2 \theta_A}{2\sin 2\beta} \right)$$

$$a_1 \equiv \cos \theta_A \, a_{MSSM} + \sin \theta_A \, a_S \qquad \qquad \cos \theta_A \simeq \frac{2v}{s \tan \beta}$$

 V_{NMSSM} has $U(1)_R$ symmetry in the limit $A_{\lambda}, A_{\kappa} \rightarrow 0$ B. A. Dobrescu and K. T. Matchev, hep-ph/0008192

$$m_{a_1}^2 \simeq 3s \left(\kappa A_{\kappa} \sin^2 \theta_A + \frac{3\lambda A_{\lambda} \cos^2 \theta_A}{2\sin 2\beta} \right)$$

$$a_1 \equiv \cos \theta_A \, a_{MSSM} + \sin \theta_A \, a_S \qquad \qquad \cos \theta_A \simeq \frac{2v}{s \tan \beta}$$

RG running:

 $\begin{array}{l}A_{\kappa} \ , \ A_{\lambda} \simeq 0 \ \text{at} \ M_{GUT} \\ dA_{\lambda}/dt = \left(-6A_t\lambda_t^2 + 8\lambda^2A_{\lambda} - 4\kappa^2A_{\kappa} - 6g_2^2M_2 - (6/5)g_1^2M_1\right)/(16\pi^2) \\ dA_{\kappa}/dt = 12\left(-\lambda^2A_{\lambda} + \kappa^2A_{\kappa}\right)/(16\pi^2)\end{array}$

 $A_{\kappa} \ll A_{\lambda} \simeq O(M_2)$ at M_Z

 V_{NMSSM} has $U(1)_R$ symmetry in the limit $A_{\lambda}, A_{\kappa} \rightarrow 0$ B. A. Dobrescu and K. T. Matchev, hep-ph/0008192

$$m_{a_1}^2 \simeq 3s \left(\kappa A_{\kappa} \sin^2 \theta_A + \frac{3\lambda A_{\lambda} \cos^2 \theta_A}{2\sin 2\beta} \right)$$

$$a_1 \equiv \cos \theta_A \, a_{MSSM} + \sin \theta_A \, a_S \qquad \qquad \cos \theta_A \simeq \frac{2v}{s \tan \beta}$$

 $A_{m \kappa}$ and $A_{m \lambda}$ terms comparable for: $\cos heta_A \ll 1$, equivalent to $a_1 \simeq a_s$

 $m_{a_1} < m_{h_1}/2$, mostly singlet, is natural!

5 - 10 % tuning of A_{κ} to A_{λ} is required for $m_a < 2m_b!$

$Br(h \rightarrow aa)$ vs. A_{κ} and A_{λ}

haa coupling:

$$\supset c_{\lambda}A_{\lambda} + c_{\kappa}A_{\kappa}$$

for $|A_{\kappa}| \gtrsim \text{few GeV}$, $h \to aa$ always dominates no additional constraints from $Br(h \to aa)$

Conclusions

\Box Higgs $\lesssim 100 \text{ GeV}$

- wanted by SUSY/natural EWSB
- preferred by precision EW data
- "indicated" by LEP data
- possible and natural in NMSSM!

 $h \to aa \to \tau^+ \tau^- \tau^+ \tau^-$, $B(h \to aa) \sim 0.9$ $h \to b\bar{b}$, $B(h \to b\bar{b}) \sim 0.1$

can fully explain $\sim 2\sigma$ excess

Conclusions

\square Higgs $\lesssim 100~{\rm GeV}$

- wanted by SUSY/natural EWSB
- preferred by precision EW data
- "indicated" by LEP data
- possible and natural in NMSSM!

 $h \rightarrow aa \rightarrow \tau^+ \tau^- \tau^+ \tau^-, \ B(h \rightarrow aa) \sim 0.9$ $h \rightarrow b\bar{b}, \ B(h \rightarrow b\bar{b}) \sim 0.1$

can fully explain $\sim 2\sigma$ excess

- important to study Higgs to Higgs decays at LEP, Tevatron and LHC
- similar results to be expected in many SUSY models with more complicated Higgs sector than that of CP conserving MSSM

Fine Tuning in NMSSM, $\tan \beta = 10$

 $p \in \{M_i(0), i = 1, 2, 3; m_s^2(0), s = Q, u, d, L, e, H_u, H_d, S; A_t(0), A_\lambda(0), A_\kappa(0)\}$

Fine Tuning in NMSSM, $\tan \beta = 10$

Comparing MSSM and NMSSM

Explaining LEP excess $(m_a > 2m_b)$

LHC Discovery Potential

 $\tan\beta = 10, M_{1.2.3}(m_z) = 100,200,300 \text{ GeV}$ 250 200 150 100 50 0 15 25 30 10 20 5 0 N_{SD}^{max}

 \mathbf{F}

Standard decay modes:

 $gg \rightarrow h/a \rightarrow \gamma\gamma$ associated Wh/a or $t\bar{t}h/a$ prod. with $\gamma\gamma l^{\pm}$ in the final state $t\bar{t}h/a$ prod. with $h/a \rightarrow b\bar{b}$ $b\bar{b}h/a$ prod. with $h/a \rightarrow \tau^+\tau^$ $gg \rightarrow h \rightarrow ZZ^{(*)} \rightarrow 4$ leptons $gg \rightarrow h \rightarrow WW^{(*)} \rightarrow l^+l^-\nu\bar{\nu}$ $WW \rightarrow h \rightarrow \tau^+\tau^ WW \rightarrow h \rightarrow WW^{(*)}$ $WW \rightarrow h \rightarrow invisible$

for an integrated luminosity: $L = 300 f b^{-1}$

Search for the SM Higgs at LEP

LHWG-2003-011

