

Search for Single-Top Production at CDF

New Results with 695 pb⁻¹

Kevin Lannon for the CDF Collaboration

Production and Decay at Tevatron

Standard Model and Beyond

- Standard Model
 - \sim Rate \propto $|V_{tb}|^2$
 - Spin polarization probes V-A structure
 - Background for other searches (Higgs)
- Beyond the Standard Model
 - > Sensitive to a 4^{th} generation
 - Flavor changing neutral currents
 - Additional heavy charged bosons
 W' or H⁺
- New physics can affect s-channel and t-channel differently

3

Single-Top Signature at CDF

PHENO	5-16-06
-------	---------

Backgrounds

- W + Heavy Flavor Other EWK > W + bb̄ \succ W + $c\overline{c}$ tŦ > W + c • W + jets production (mistags) Light flavor jet tagged because of poorly reconstructed tracks Multi-jet QCD W + Heavy Multi-jet QCD Flavor Jet faking lepton W + Light bb production with semileptonic Flavor decay (Mistags) Top pair production > Mainly dilepton channel where one lepton is not reconstructed
 - Other EWK backgrounds
 > WW, WZ, Z→ττ, etc.
- Signal / Background ~ 1/20

Total Background: 646 \pm 96 events Expected Single-Top: 28 \pm 3 events

Multivariate Methods

CDF II Preliminary

- Multivariate likelihood method
 - Build likelihood by looking at collection of 1-D histograms of signal and background
 - Total likelihood given by product of likelihoods for individual variables
 - Doesn't take advantage of correlations

CDF II Preliminary

- Neural Network
 - Maps input variables to continuous distribution between 1 (background) and 1 (signal)
 - -1 (background) and 1 (signal)
 - Takes correlations among variables into account
 - Obtained through iterative training procedure

- Sources of W + b-tagged events
 - W + beauty (single-top, W + bb)
 - > W + charm (W + $c\overline{c}$, W + c)
 - > W + light (W + mistag)
- Use a Neural Network to separate
 - > 25 variables
 - Tag displacement
 - Invariant mass of tagged tracks
 - Track multiplicity
 - Semileptonic decays
- Good separation. If used for cut (NN output > 0):
 - 82% efficiency for real b
 vertices
 - Rejects 60% of backgrounds

W + 2 jet events with \geq 1 *b*-tag

- Combined search
 - Look for s- and t-channel production simultaneously
 - Assume SM ratio between s- and t-channel contributions
 - Best sensitivity for seeing overall single-top
- Separate searches
 - > Consider s- and t- channel as independent components
 - > Set separate limits on the two processes
 - > Useful for searching for non-SM effects
 - > Multivariate likelihood

Fit for either s- or t-channel with other single-top contribution fixed

Neural network analysis

□ Fit for s- and t-channel simultaneously

Produce 2-D limit contour

Likelihood

• Variables: H_T , $Q \times \eta$, lepton-neutrino-bottom and dijet invariant masses, angles, NN b-tag output, Leading-order matrix element

- Test data against two hypotheses
 - > H₀: No single-top; just SM backgrounds
 - > H_1 : SM backgrounds plus single-top with some cross section
- Set limit by varying cross section for H_1 until we reach 95% confidence level limit
- Expected limits assume SM backgrounds only

Channel	s+t-channel	t-channel	s-channel
SM expectation (σ_{NLO})	$2.9\pm0.4~\textrm{pb}$	2.0 ± 0.3 pb	$0.9\pm0.1~\textrm{pb}$
Expect 95% C.L. Limit	3.4 pb	2.6 pb	5.7 pb
Observed 95% C.L. Limit	4.3 pb	2.9 pb	5.1 pb

Neural Net (Combined Search)

- Single NN trained with combination of s- and t- channel as signal
- 14 Variables: ℓvb and dijet invariant masses, Q×η, angles, jet E_T and η, W-boson η, kinematic fitter quantities, NN b-tag output

PHENO 5-16-06 K. Lannon 11			
	PHENO 5-16-06	K. Lannon	11

Neural Net (Separate Search)

PHE

 Expected 95% confider level limit assumes SM amount of single-top

Channel	s+t-channel	t-channel	s-channel
SM expectation (σ_{NLO})	$\textbf{2.9} \pm \textbf{0.4 pb}$	2.0 ± 0.3 pb	$0.9\pm0.1~\text{pb}$
Expect 95% CL Limit	5.7 pb	4.2 pb	3.7 pb
Observed 95% CL Limit	3.4 pb	3.1 pb	3.2 pb
0 5-16-06	Klannon		

