W + jet production at CDF

Ben Cooper

Pheno'06 Symposium University of Wisconsin May 15th–17th

OUTLINE

- Motivations for Study
- Monte Carlo Issues
- Measurement definition
- Background estimation
- Results
- Systematics
- Conclusions & plans

CDF and the Tevatron

Ben Cooper MSU/UCL

Motivation: Understanding a vital background

- Boson + jet is the final state for a number of important high p_T physics processes:
 - Top pair & single top production.
 - Higgs boson searches.
 - Searches for super-symmetric particles.
- All these signals are overwhelmed by large QCD production of boson + jets.
- It is crucial to have a good understanding of the boson + jets process.

Motivation: Test of pQCD Predictions

- Testing ground for pQCD in multijet environment
- The presence of a W/Z boson:
 - Ensures high Q² pQCD
 - Large BR into leptons easy to detect experimentally
- Key sample to test LO and NLO pQCD calculations
 - Pythia, Herwig: parton shower & hadronization, limited ME
 - AlpGen : W + n parton ME, interface to Pythia/Herwig for PS, MLM ME-PS matching scheme
 - Sherpa : W + n parton ME, APACIC showering, CKKW ME-PS matching scheme
 - MCFM: NLO ME W + 1 or 2 partons
 - MC@NLO: W+X (NLO ME + herwig shower)
- Study the underlying event in an alternative topology than inclusive multijets.

W + n Jets LO Predictions

- W + n parton LO ME calculation + parton shower
 + hadronisation:
 - W + \geq n jets Cross-section
 - Jet kinematics for ≥ n jets

• Issues:

- Dependence on Q² scale
- Dependence on parton cuts
- Phase space overlap when combine n parton samples

• Advances:

- ME-PS matching CKKW and MLM prescriptions.
- NLO predictions.

 $(\mathbf{q}) = \begin{bmatrix} \mathbf{10}^{\circ} & \mathbf{CDF Run II Preliminary} \\ \mathbf{W} = \mathbf{v} + \geq n \text{ jets}, 127 \text{ pb}^{-1} \\ \mathbf{F} = CDF \text{ Data} \\ \text{JetClu R=0.4 (E_{T}>15 \text{ GeV}, |\pi_{D}|<2.4)} \\ \text{w/ syst.} \text{ Jet Energy Uncertainty} \\ \text{LO QCD } \mu_{R/F} = M_{W}^{2} \text{ Alpgen} \\ \text{V LO QCD } \mu_{R/F} = \langle \mathbf{p}_{T}^{2} \rangle \text{ Alpgen} \\ \text{V LO QCD } \mu_{R/F} = \langle \mathbf{p}_{T}^{2} \rangle \text{ Alpgen} \\ \text{V LO QCD } \mu_{R/F} = \langle \mathbf{p}_{T}^{2} \rangle \text{ Alpgen} \\ \text{Jet Multiplicity (} \geq n \text{ jets}) \end{bmatrix}$

LO W + ≥ n parton crosssection vs data: good within large Q² uncertainties.

Definition of our measurement

- Aim for a definition as much as possible independent of theoretical predictions and detector effects.
 - Restrict W decay to analysis acceptance.
 - P_T^{ele} > 20 GeV, P_T^v > 30 GeV
 - WM_T > 30 GeV/c², $|\eta^{ele}| < 1.1$
 - Reduces theoretical dependence of measurement, without comprising usefulness.
 - Jets: JETCLU cone 0.4, ${\rm E_T}$ > 15 GeV, $|\eta|$ < 2.0.
 - Jet energies corrected to hadron level and for multiple interactions – underlying event remains.
 - Differential w.r.t. 1st, 2nd, 3rd and 4th jet E_T, 1st-2nd jet invariant mass and ΔR.
- This is not an EWK measurement W is a clean signal for high Q² events within which we can examine jet kinematics.

 $d\sigma_{W}$

d(jet)

Making the Measurement

Acceptance and Efficiency

- W Cross-section phase space same as analysis acceptance.
- Acceptance factor reduced to accounting for detector resolution and local shape around cut.
- Reduces theoretical dependence of measurement.

- Use W MC for acceptance and electron ID efficiency:
 - Systematic on ID efficiency by comparing MC and Z data
 - Estimation of acceptance systematic by comparing different MC \$^{5%}
 models

Largely independent of jet kinematics

Background Estimation

- QCD modelled by fake-electron sample formed from dataset.
- MC for other bkgds and signal
- Background normalisation from fit to data missing E_{T} distribution.
- Excellent agreement in other kinematic variables.

Background Systematics:

- Fake-electron statistics (dominant)
- Fake-electron QCD model (5-20%)
- Top cross-section (10-20%)
- MC model dependence (5%)

Ben Cooper MSU/UCL

Background Fractions

- QCD is a substantial background contribution, dominating at low E_T .
- But in high E_T region Top pair production is dominant.

Promotion Background (small contribution at low E_T):

- Extra interactions can produce additional jet not associated to the W hard scatter.
- Estimate extra jet rate in minimum bias events, correct data on average as a function of the number of vertices.

CDF W+jets Differential Cross-Section

MC has been normalized to inclusive data cross section in each jet sample!

LO W + n parton prediction reproduces shape of $d\sigma/dE_{\tau}$ reasonably well.

CDF W+jets Integrated Cross-Section

MC has been normalized to inclusive data cross section in each jet sample!

First bin MC & data is in perfect agreement by construction.

MC has been normalized to measured W+2 jet inclusive cross section!

Representative of the behavior of errors in the measurements

	Relative error on leadi	ng jet d $\sigma/{ m dE}_{ m T}$	Error on leading jet	J(d \sigma/dET)dET
	W(→ ev) + ≥ 1 jet	CDF Run II Preliminary	W(→ e _V) + ≥ 1 jet	CDF Run II Preliminary
Relative Error on d_{G}/dE_{T}				
			□ -▼- Statistic ² -0.5	A A
			Background	
	Background		🛱 🚽 🕂 Jet Energy Scale	
			-1 — Acceptance	
	0 50 100 150 200	250 300 350	0 20 40 60 80 100	120 140 160 180 200
	Jet	Transverse Energy [GeV]	Jet Tra	nsverse Energy (E ^{min}) [GeV]

- Large statistical uncertainty at large E_{T} .
- Systematic dominated by jet energy scale at low $E_{\rm T},$ and by the (QCD) background subtraction at high $E_{\rm T}.$

ſ

Work in progress and Plans

- Extend the measurement to use muons and to 1fb⁻¹:
 - Larger E_{T} range, more sensitive to the tail of the cross-section.
 - Better control on data driven QCD background subtraction.
- Move to the preferred midpoint algorithm don't expect big changes.
- Make extensive comparisons to theory, both shape and rate predictions:
 - LO ME-PS matching prescriptions CKKW and MLM
 - NLO predictions: MCFM (parton level), MC@NLO (hadron level)
- Measure the Z + Jets cross-section:
 - Reduced statistics but backgrounds greatly reduced also.
 - Z + Jet events provide an alternative and cleaner environment for UE studies than multijet events.

Conclusions

- A new measurement of differential σ(W + jets) w.r.t jet kinematics, more suitable for theoretical comparisons:
 - Hadron level measurement: jet detector effects removed.
 - Differential measurement: background, acceptance and efficiency impact on shape accounted for.
 - Restricted W decay cross-section definition: reduced theoretical dependence.
- Any theorist can overlay their predictions without need for CDF detector simulation.
- The systematic on many high $p_{\rm T}$ measurements receives a substantial contribution from boson + jet knowledge.
- Crucial to have a robust simulation of boson + jets to explore for new physics at Tevatron & LHC.