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@ CDF and the Tevatron
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& Motivation: Understanding a vital background
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e Boson + jet is the final state for a number of important
high p; physics processes:
e Top pair & single top production.
e Higgs boson searches.
e Searches for super-symmetric particles.

All these signals are overwhelmed by large QCD production
of boson + jets.

It is crucial to have a good understanding of the boson +
Jets process.
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@ Motivation: Test of pQCD Predictions

e Testing ground for pQCD in multijet environment

e The presence of a W/Z boson:

e Ensures high Q% - pQCD

 Large BR into leptons - easy to detect experimentally
e Key sample to test LO and NLO pQCD calculations

Pythia, Herwig: parton shower & hadronization, limited ME

AlpGen : W + n parton ME, interface to Pythia/Herwig for PS,
MLM ME-PS matching scheme

Sherpa : W + n parton ME, APACIC showering, CKKW ME-PS
matching scheme

MCFM: NLO ME W + 1 or 2 partons
MC@NLO: W+X (NLO ME + herwig shower)

e Study the underlying event in an alternative topology
than inclusive multijets.
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@ W + n Jets LO Predictions

* W + n parton LO ME calculation + parton shower
+ hadronisation:

e W + 2 n jets Cross-section _1'; . —
) . ) 2 F CDFRun I Preliminary E
e Jet kinematics for > n jets ¢ [ W bueznjsts, 127po
%10 3 A JetClu R=0.4 (E;>15 GeV, I, |c§4!_5
o wil syst. ; Jet Energy Uncertain 7
® Issues: 0 . ALO QCD i, = M, Alpgen 7
%102_ $ VLO QCD = <p>> Alpgen__
» Dependence on Q2 scale I :
* Dependence on parton cuts | i .
e Phase space overlap when ' I
combine n parton samples E | | | |
4

0 1 2 3
Jet Multiplicity ( > n jets)

e Advances:
e ME-PS matching - CKKW
and MLM prescriptions.

* NLO predictions.

LO W + 2 n parton cross-
section vs data: good within
large Q2 uncertainties.
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€ Definition of our measurement

e Aim for a definition as much as possible independent of
theoretical predictions and detector effects.

do |

W —ev

d(jet)

Restrict W decay to analysis acceptance.
P.ele> 20 GeV, P;Y > 30 GeV
WM, > 30 GeV/c?, [n®e| < 1.1

Reduces theoretical dependence of
measurement, without comprising usefulness.

Jets: JETCLU cone 0.4, E; > 15 GeV, Iyl < 2.0.

Jet energies corrected to hadron level and for
multiple interactions - underlying event
remains.

Differential w.r.t. 1st, 2nd, 3rd and 4th jet E,
1st-2nd jet invariant mass and AR.

e This is not an EWK measurement - W is a clean signal for
high Q% events within which we can examine jet kinematics.
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& Making the Measurement

. Backgrounds:
Identify W->ev . QCD multijet
candidate events . . e Tob pair

from high E In each bin of the jet PP
T . . : e Z—ee, W—1tv
electron and large Kinematic variable WW
missing Eq. calculate: |
Reconstruct jets > e
' Ncand kagd interactons
O =
A ® gID ® L = Dataset luminosity
320+20pb!
Acceptance and
efficiency both » Theoretical dependence enters the
estimated using measurement via background and acceptance
detector simulated LO estimation - covered by systematics.
Wt Jci:sloMonfe * Detector dependence removed by jet energy

scale corrections and acceptance.
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@ Acceptance and Efficiency

, Migration of
c W Cross-sec‘rlop phase space . i cted events
same as analysis acceptance. 4 >
e Acceptance factor reduced Cross—section
to accounting for detector | acceptance
resolution and local shape /
around cut. :
* Reduces theoretical |
dependence of measurement. ' >

Cut Kinematic Variable

e Use W MC for acceptance and electron ID efficiency:
e Systematic on ID efficiency by comparing MC and Z data }
5%

e Estimation of acceptance systematic by comparing different MC
models

Aee, =0.6£0.03 oo St
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& Background Estimation
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& Background Fractions
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e QCD is a substantial background contribution, dominating at low E-.
e But in high E; region Top pair production is dominant.

Promotion Background (small contribution at low E;):

e Extra interactions can produce additional jet not associated to the W
hard scatter.

e Estimate extra jet rate in minimum bias events, correct data on
average as a function of the number of vertices.
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@ CDF W+ jets Differential Cross-Section
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MC has been normalized to inclusive data cross section in each jet sample!

LO W + n parton prediction reproduces shape of do/dE; reasonably well.
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@ CDF W+ jets Integrated Cross-Section

f do’W%ev ET
e dE,
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o(W + 2 n jets) for
different jet E;
thresholds.

10°

(do/dE)dE-[pb]

=
— E
L

10°¢

(W—ev) + 2 njets CDF Run Il Prelimina
N I I 1 1 1 1 I 1 I I I | I I I I | I I I I | I I _
Fiet -~ CDF Data de: 320 pb”’ ’
E . Wkin: E3z20[GeV]; |n|<1.1 E
= 2Mjet W MY = 20[GeV/c®); E) = 30[GeV] T
— Het - Jets:  JetClu B=0.4; |n|<2.0 —
| - HHHH = hadron level; no UE correction )
= et ™ " ~t LO Alpgen + PYTHIA =
— bt B 4—*_:_*% Total o normalized to Data .
. . HH -
— H . -ﬁi:I -
- T H %f‘ ‘ -
; 1 | 1 1 _I_-% 1 1 1 1 1 | 1 1 1 | 1 1 ;

50 100 150 200
Jet Transverse Energy (E] ) [GeV]

MC has been normalized to inclusive data cross section in each jet sample!

First bin MC & data is in perfect agreement by construction.
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@ CDF W+ jets Differential Cross-Section
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MC has been normalized to measured W+2 jet inclusive cross section!
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& Errors breakdown

Representative of the behavior of errors in the measurements

Relative error on leading jet do/dE;  Error on leading jet f(dG/dET)dET
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* Large statistical uncertainty at large E;.

e Systematic dominated by jet energy scale at low E;, and by the
(QCD) background subtraction at high E.
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@ Work in progress and Plans

 Extend the measurement to use muons and to 1fb:
e Larger E; range, more sensitive to the tail of the cross-section.
e Better control on data driven QCD background subtraction.

e Move to the preferred midpoint algorithm - don’t expect
big changes.

* Make extensive comparisons to theory, both shape and
rate predictions:
e LO ME-PS matching prescriptions - CKKW and MLM
e NLO predictions: MCFM (parton level), MC@NLO (hadron level)

* Measure the Z + Jets cross-section:
e Reduced statistics but backgrounds greatly reduced also.

e Z + Jet events provide an alternative and cleaner environment
for UE studies than multijet events.
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@ Conclusions

e A new measurement of differential o(W + jets) w.r.t jet
Kinematics, more suitable for theoretical comparisons:

 Hadron level measurement: jet detector effects
removed.

e Differential measurement: background, acceptance
and efficiency impact on shape accounted for.

* Restricted W decay cross-section definition: reduced
theoretical dependence.

 Any theorist can overlay their predictions without need
for CDF detector simulation.

e The systematic on many high p; measurements receives a
substantial contribution from boson + jet knowledge.

e Crucial to have a robust simulation of boson + jets to
explore for new physics at Tevatron & LHC.
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