Persistent Fine-Tuning in Supersymmetry and the NMSSM

hep-ph/0512189 Philip Schuster and Natalia Toro Harvard University

Pheno 06 University of Wisconsin, Madison May 16, 2006

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 1/2

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 2/2

• The Absence of SUSY at LEP?

- The Absence of SUSY at LEP?
- Sources of Tension in SUSY → Little Hierarchy Problem!

- The Absence of SUSY at LEP?
- Sources of Tension in SUSY → Little Hierarchy Problem!

Does the NMSSM resolve the tension?

- The Absence of SUSY at LEP?
- Sources of Tension in SUSY → Little Hierarchy Problem!
- Does the NMSSM resolve the tension?
 - Tuning to keep M_Z small slightly alleviated.

- The Absence of SUSY at LEP?
- Sources of Tension in SUSY → Little Hierarchy Problem!
- Does the NMSSM resolve the tension?
 - Tuning to keep M_Z small slightly alleviated.
 - Tuning required for viable phenomenology.

- The Absence of SUSY at LEP?
- Sources of Tension in SUSY → Little Hierarchy Problem!
- Does the NMSSM resolve the tension?
 - Tuning to keep M_Z small slightly alleviated.
 - Tuning required for viable phenomenology.
- \rightarrow Tuning is persistent!

 We've found nothing beyond the Standard Model at LEP I...

- We've found nothing beyond the Standard Model at LEP I...
- Nothing at LEP II...

- We've found nothing beyond the Standard Model at LEP I...
- Nothing at LEP II...
- Nothing at Tevatron Run I or II... so far?

- We've found nothing beyond the Standard Model at LEP I...
- Nothing at LEP II...
- Nothing at Tevatron Run I or II...so far?
- No indirect evidence in EDM or flavor signals...

- We've found nothing beyond the Standard Model at LEP I...
- Nothing at LEP II...
- Nothing at Tevatron Run I or II... so far?
- No indirect evidence in EDM or flavor signals...
- Naively, $m_S \gtrsim 500 \text{ GeV} \rightarrow \text{the weak scale}$ already looks unnatural at the 1% level!

•
$$m_Z^2 = \frac{1 - \cos(2\beta)}{\cos(2\beta)} m_{H_u}^2 - \frac{1 + \cos(2\beta)}{\cos(2\beta)} m_{H_d}^2 - 2\mu^2$$
.

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 4/2

•
$$m_Z^2 = \frac{1 - \cos(2\beta)}{\cos(2\beta)} m_{H_u}^2 - \frac{1 + \cos(2\beta)}{\cos(2\beta)} m_{H_d}^2 - 2\mu^2$$
.

 In the presence of large couplings (y_t, g₃), soft parameters receive significant radiative corrections.

•
$$m_Z^2 = \frac{1 - \cos(2\beta)}{\cos(2\beta)} m_{H_u}^2 - \frac{1 + \cos(2\beta)}{\cos(2\beta)} m_{H_d}^2 - 2\mu^2$$
.

 In the presence of large couplings (y_t, g₃), soft parameters receive significant radiative corrections.

• We expect
$$m_Z^2 \sim m_{H_u}^2 \sim m_{\tilde{t}}^2 \sim m_{\tilde{g}}^2$$
.

•
$$m_Z^2 = \frac{1 - \cos(2\beta)}{\cos(2\beta)} m_{H_u}^2 - \frac{1 + \cos(2\beta)}{\cos(2\beta)} m_{H_d}^2 - 2\mu^2$$
.

- In the presence of large couplings (y_t, g₃), soft parameters receive significant radiative corrections.
- We expect $m_Z^2 \sim m_{H_u}^2 \sim m_{\tilde{t}}^2 \sim m_{\tilde{g}}^2$.
- With gaugino unification, $m_{\tilde{g}} \sim (3-6)m_{\tilde{\chi}}$.

•
$$m_Z^2 = \frac{1 - \cos(2\beta)}{\cos(2\beta)} m_{H_u}^2 - \frac{1 + \cos(2\beta)}{\cos(2\beta)} m_{H_d}^2 - 2\mu^2$$
.

- In the presence of large couplings (y_t, g₃), soft parameters receive significant radiative corrections.
- We expect $m_Z^2 \sim m_{H_u}^2 \sim m_{\tilde{t}}^2 \sim m_{\tilde{g}}^2$.
- With gaugino unification, $m_{\tilde{g}} \sim (3-6)m_{\tilde{\chi}}$.
- The entire SUSY spectrum seems heavier than $M_Z!$

 If we find SUSY at the Tevatron or LHC, it will probably look unusual!

- If we find SUSY at the Tevatron or LHC, it will probably look unusual!
- Can we use the apparent fine-tuning to our advantage and anticipate the underlying theory?

- If we find SUSY at the Tevatron or LHC, it will probably look unusual!
- Can we use the apparent fine-tuning to our advantage and anticipate the underlying theory?
- Do non-standard Higgs scenarios relieve fine-tuning?

- If we find SUSY at the Tevatron or LHC, it will probably look unusual!
- Can we use the apparent fine-tuning to our advantage and anticipate the underlying theory?
- Do non-standard Higgs scenarios relieve fine-tuning?
- What should we expect the SUSY spectrum to look like?

Gluino and Squark Searches

CDF Run II Prelim.

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 6/2

Stop and Sbottom Searches

D0 note 5050-CONF

D0 note 4832-CONF

Third generation squarks should be light while first two generations are $\gtrsim 400$ GeV.

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 7/2

Tuning from Heavy Higgs

• $m_h^2 < M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$.

Tuning from Heavy Higgs

•
$$m_h^2 < M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$
.

• $m_h \gtrsim 114 \text{ GeV} \rightarrow \text{large } m_{\tilde{t}} \rightarrow \sim 5\%$ tuning to keep M_Z^2 small.

Tuning from Heavy Higgs

•
$$m_h^2 < M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$
.

- $m_h \gtrsim 114 \text{ GeV} \rightarrow \text{large } m_{\tilde{t}} \rightarrow \sim 5\%$ tuning to keep M_Z^2 small.
- Possible solutions invalidate tree level relation (new contributions to Higgs quartic coupling, lower the SUSY mediation scale, non-standard Higgs...etc).

Tension with Heavy Higgs

LEP Collaborations and LHWG, hep-ex/0602042

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 9/2

Can the NMSSM Resolve the Little Hierarchy?

• $\mu H_u H_d \rightarrow \lambda S H_u H_d$ and $\langle S \rangle \rightarrow s$.

Can the NMSSM Resolve the Little Hierarchy?

- $\mu H_u H_d \rightarrow \lambda S H_u H_d$ and $\langle S \rangle \rightarrow s$.
- $V(s, v_u, v_d) = \lambda^2 (h_u^2 s^2 + h_d^2 s^2 + h_u^2 h_d^2) + \kappa^2 s^4 2\lambda \kappa h_u h_d s^2 + \frac{1}{4} g^2 (h_u^2 h_d^2)^2 2\lambda A_\lambda h_u h_d s + \frac{2}{3} \kappa A_\kappa s^3 + m_{H_u}^2 h_u^2 + m_{H_d}^2 h_d^2 + m_S^2 s^2.$

Can the NMSSM Resolve the Little Hierarchy?

- $\mu H_u H_d \rightarrow \lambda S H_u H_d$ and $\langle S \rangle \rightarrow s$.
- $V(s, v_u, v_d) = \lambda^2 (h_u^2 s^2 + h_d^2 s^2 + h_u^2 h_d^2) + \kappa^2 s^4 2\lambda \kappa h_u h_d s^2 + \frac{1}{4} g^2 (h_u^2 h_d^2)^2 2\lambda A_\lambda h_u h_d s + \frac{2}{3} \kappa A_\kappa s^3 + m_{H_u}^2 h_u^2 + m_{H_d}^2 h_d^2 + m_S^2 s^2.$

 Extra singlet scalar and pseudo-scalar that mix with Higgs states. Extra fermion singlino.

• Large $\lambda \rightarrow MSSM$ -like Higgs is naturally heavier than 114 GeV (Landau poles?).

- Large $\lambda \rightarrow MSSM$ -like Higgs is naturally heavier than 114 GeV (Landau poles?).
- Hide Higgs in cascade decays? E.g.
 Br(h → aa)≈ 1 with a light. (Dermisek and Gunion, hep-ph/0502105, hep-ph/0510322, see also Chang, Fox, and Weiner, hep-ph/0511250)

- Large $\lambda \rightarrow MSSM$ -like Higgs is naturally heavier than 114 GeV (Landau poles?).
- Hide Higgs in cascade decays? E.g.
 Br(h → aa)≈ 1 with a light. (Dermisek and Gunion, hep-ph/0502105, hep-ph/0510322, see also Chang, Fox, and Weiner, hep-ph/0511250)
- Interesting possibility: Higgs is genuinely hidden! Is this natural?

- Large $\lambda \rightarrow MSSM$ -like Higgs is naturally heavier than 114 GeV (Landau poles?).
- Hide Higgs in cascade decays? E.g. $Br(h \rightarrow aa) \approx 1$ with a light. (Dermisek and Gunion, hep-ph/0502105, hep-ph/0510322, see also Chang, Fox, and Weiner, hep-ph/0511250)
- Interesting possibility: Higgs is genuinely hidden! Is this natural?
- Two approximate symmetry limits generate a naturally light a, $U(1)_{PQ}$ and $U(1)_R$.

• ($[H_u] = [H_d] = 1$, [S] = -2) A_{κ} , $\kappa \approx 0$. Not broken by Standard Model.

• ($[H_u] = [H_d] = 1$, [S] = -2) A_{κ} , $\kappa \approx 0$. Not broken by Standard Model.

•
$$\mu = \lambda s = rac{A_\lambda \sin(2\beta)}{2(1+y)}$$
, $y = rac{m_S^2}{\lambda^2 v^2}$.

• ($[H_u] = [H_d] = 1$, [S] = -2) A_{κ} , $\kappa \approx 0$. Not broken by Standard Model.

•
$$\mu = \lambda s = \frac{A_\lambda \sin(2\beta)}{2(1+y)}$$
, $y = \frac{m_S^2}{\lambda^2 v^2}$.

•
$$m_{a_1}^2 \gtrsim \frac{3\kappa}{2\lambda} (3\sqrt{\mu_{min}^2 + \lambda^2 v^2} m_{\chi}^{min} \lambda^2 + \mathcal{O}(A_{\kappa}\mu)).$$

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 12/2

• ($[H_u] = [H_d] = 1$, [S] = -2) A_{κ} , $\kappa \approx 0$. Not broken by Standard Model.

•
$$\mu = \lambda s = \frac{A_\lambda \sin(2\beta)}{2(1+y)}$$
, $y = \frac{m_S^2}{\lambda^2 v^2}$.

•
$$m_{a_1}^2 \gtrsim \frac{3\kappa}{2\lambda} (3\sqrt{\mu_{min}^2 + \lambda^2 v^2} m_{\chi}^{min} \lambda^2 + \mathcal{O}(A_{\kappa}\mu)).$$

• To keep $m_{a_1} \lesssim 10$ GeV, need $\kappa \lesssim 0.01 \lambda$.

- Electroweak symmetry breaking requires small $m_{H_u}^2$ and m_S^2

- Electroweak symmetry breaking requires small $m_{H_u}^2$ and m_S^2
- PQ breaking must be small to keep $m_A \lesssim 10$ GeV.

- Electroweak symmetry breaking requires small $m_{H_u}^2$ and m_S^2
- PQ breaking must be small to keep $m_A \lesssim 10$ GeV.
- Singlino too light! $m_{\chi_0^1} \approx \frac{2\kappa\lambda\mu^2 + \lambda^2v^2\sin 2\beta}{\sqrt{\lambda^2v^2 + \mu^2}}$

- Electroweak symmetry breaking requires small $m_{H_u}^2$ and m_S^2
- PQ breaking must be small to keep $m_A \lesssim 10$ GeV.
- Singlino too light! $m_{\chi_0^1} \approx \frac{2\kappa\lambda\mu^2 + \lambda^2v^2\sin 2\beta}{\sqrt{\lambda^2v^2 + \mu^2}}$
- Large μ requires large $A_{\lambda} \gtrsim (250 350)$ GeV \rightarrow EW tuning

Tuning for Electroweak Symmetry Breaking

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 14/2

Phenomenology Tuning

 $A_{\lambda} = 350 \text{ GeV} A_{\kappa} = 50 \text{ GeV} m_{H_{U}}^2 = -(40 \text{ GeV})^2 m_s^2 = 0$

Analyzed using NMHDECAY I (Ellwanger, Hugonie, hep-ph/0406215). Thanks to A. Sopczak for LEP $H \rightarrow 4b$ exclusion contours

NMSSM R-Symmetric Limit

• $([H_u] = [H_d] = 1$, and [S] = 0), $A_{\lambda}, A_{\kappa} \approx 0$.

NMSSM R-Symmetric Limit

•
$$([H_u] = [H_d] = 1$$
, and $[S] = 0$), $A_{\lambda}, A_{\kappa} \approx 0$.

•
$$s^2 = -\frac{(m_S^2 + \lambda^2 v^2 - \lambda \kappa v^2 \sin(2\beta))}{2\kappa^2}$$
.

NMSSM R-Symmetric Limit

•
$$([H_u] = [H_d] = 1$$
, and $[S] = 0$), $A_{\lambda}, A_{\kappa} \approx 0$.

•
$$s^2 = -\frac{(m_S^2 + \lambda^2 v^2 - \lambda \kappa v^2 \sin(2\beta))}{2\kappa^2}$$
.

•
$$m_{a_1}^2 \approx \frac{9\lambda^2 v^2 A_\lambda \sin(2\beta)}{4\mu} - \frac{3\mu A_\kappa}{2}$$
.

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 16/2

Tension in R-Symmetric Limit

- SM A-terms and gaugino masses break $U(1)_R$, generating $\delta A_\lambda \sim 100$ GeV.
 - Cancelation (5 10%) required for $m_{a_1} \leq 10$ GeV.
 - Without light a_1 , Higgs-strahlung must be suppressed (5 10% tuning).

Tension in R-Symmetric Limit

- SM A-terms and gaugino masses break $U(1)_R$, generating $\delta A_\lambda \sim 100$ GeV.
 - Cancelation (5 10%) required for $m_{a_1} \leq 10$ GeV.
 - Without light a_1 , Higgs-strahlung must be suppressed (5 10% tuning).
- Very large negative m_S^2 is needed to generate μ .

Tension in R-Symmetric Limit

- SM A-terms and gaugino masses break $U(1)_R$, generating $\delta A_\lambda \sim 100$ GeV.
 - Cancelation (5 10%) required for $m_{a_1} \leq 10$ GeV.
 - Without light a_1 , Higgs-strahlung must be suppressed (5 10% tuning).
- Very large negative m_S^2 is needed to generate μ .
- Radiative EWSB works, but requires negative m_S^2 at high scales.

Electroweak Symmetry Breaking in the R-Limit

Persistent Fine-Tuning in Supersymmetry and the NMSSM - p. 18/2

$U(1)_R$ Higgs Constraints

Persistent Fine-Tuning in Supersymmetry and the NMSSM – p. 19/2

- LEP "should have" seen SUSY at or below M_Z .

- LEP "should have" seen SUSY at or below M_Z .
- Alleviating the tuning requires **both** an altered Higgs sector and an unusual squark/gluino spectrum.

- LEP "should have" seen SUSY at or below M_Z .
- Alleviating the tuning requires **both** an altered Higgs sector and an unusual squark/gluino spectrum.
- NMSSM (or extensions) can accommodate non-standard Higgs scenarios.

M_Z tuning is not an adequate measure of naturalness

- *M_Z* tuning is not an adequate measure of naturalness
 - Tuning for electroweak symmetry breaking

- M_Z tuning is not an adequate measure of naturalness
 - Tuning for electroweak symmetry breaking
 - Phenomenology tunings required to evade LEP bounds can be severe.

- *M_Z* tuning is not an adequate measure of naturalness
 - Tuning for electroweak symmetry breaking
 - Phenomenology tunings required to evade LEP bounds can be severe.
 - Radiative instability of mass parameters other than M_Z

- M_Z tuning is not an adequate measure of naturalness
 - Tuning for electroweak symmetry breaking
 - Phenomenology tunings required to evade LEP bounds can be severe.
 - Radiative instability of mass parameters other than M_Z
- Is the little hierarchy hinting at the need for a new solution to the big hierarchy?

- M_Z tuning is not an adequate measure of naturalness
 - Tuning for electroweak symmetry breaking
 - Phenomenology tunings required to evade LEP bounds can be severe.
 - Radiative instability of mass parameters other than M_Z
- Is the little hierarchy hinting at the need for a new solution to the big hierarchy?