Search for SUSY with light

Yurii Maravin for DØ Collaboration

The Irresistible Rise of Standard Model

Still a low energy approximation...

Hierarchy Problem and SUSY

- Hierarchy problem problem with fundamental scalars:
 - If you want your theory to break at Λ , the mass of scalar must be O(Λ).
 - To achieve EWSB, mass of Higgs must be O(100 GeV), not O(100000000000000 GeV)
 - What is the probability that quadratically divergent contributions to the Higgs boson mass will accidentally cancel each other up to Plank energy?
- Supersymmetry (SUSY)
 - Between fermions and bosons (each SM fermion has a SUSY boson partner)
 - Higgs mass corrections for bosons and fermions have opposite signs – corrections cancel precisely
 - Mass of Higgs is below 130 GeV
 - SUSY must be broken
 - Otherwise SUSY particles would have been found by now...

Gauge-mediated SUSY

- One of the models with SUSY broken by new gauge field ("messenger")
- Phenomenology:
 - Gravitino is very light (<< MeV) and is LSP
 - NLSP is slepton or neutralino
 - If NLSP is neutralino, then
 - Final state includes two photons

$$p\overline{p} \rightarrow gauginos \rightarrow W, Z, \gamma + \chi_1^0 \chi_1^0 \rightarrow$$

 $\rightarrow \gamma \gamma + \tilde{G}\tilde{G} + X$

Fermilab Tevatron Collider

Analysis Overview

- Single EM triggers: ~1 fb⁻¹ before quality selections (about 8 times Run I data)
- Use central calorimeter only for photon identification
- More sophisticated photon ID
 - Central Preshower Detector

Backgrounds

- Physics backgrounds are negligible
- All instrumental backgrounds can be determined from data

without true MET *-fake MET* π_{i}^{0}

- QCD: $\gamma\gamma$, $\gamma+j$, j+j (jet is faking γ)
 - Drell-Yan

largest

(lost tracks)

 π^0 normal jet

 π^0

with true MET *-fake* γ

- $W\gamma \rightarrow e\nu\gamma$ (lost track) $Wj \rightarrow e\nuj$ (lost track, fake γ)
- $Z \rightarrow \tau \tau \rightarrow ee + X$ (lost tracks)
- $tt \rightarrow ee + X$ (lost tracks)
- WW, WZ, ...
- (lost tracks)

Data (DØ Run II Preliminary)

	Total events	${\not\!\! E_T} < 12~{\rm GeV}$	${\not\!\! E_T}>45~{\rm GeV}$
$\gamma\gamma$	1790	1549	4
$e\gamma$	1469	1189	22
hh	6114	5172	6
	QCD BG	1.8 ± 0.7	
	QCD BG	1.4 ± 0.6	
		20.6 ± 4.4	
		0.28 ± 0.06	
Tot	al BG to $\gamma\gamma$	2.1 ± 0.7	

See 4 events with MET > 45 GeV, expect 2.1 ± 0.7

Limit Setting

• Use Bayesian limit calculator to set limits - $\tan\beta=15$, $\mu>0$, $M_{mess}=2\cdot\Lambda$

Λ , TeV	$m_{\chi_1^0}, \mathrm{GeV}$	$m_{\chi_1^+}, \text{GeV}$	σ^{LO}_{TOT} , fb	K-factor	Efficiency	95% CL Limit, fb
70	93.7	168.2	215.	1.207	0.167 ± 0.025	63.4
75	101.0	182.3	148.	1.197	0.180 ± 0.027	59.2
80	108.5	198.1	97.5	1.187	0.183 ± 0.027	58.0
85	115.8	212.0	65.4	1.177	0.186 ± 0.028	56.9
90	123.0	225.8	41.8	1.167	0.186 ± 0.028	56.9
95	130.2	239.7	29.5	1.157	0.195 ± 0.029	54.2

TABLE III: Points on the GMSB model Snowmass slope: their cross-sections, efficiencies and cross-section limits.

The sources of error on signal efficiency are the error on the EM ID (10%),MC statistics (5%), trigger efficiency (4%), track match veto (3%) and PDF uncertainties (4%).

- $\Lambda > 88.5 \text{ TeV}$
- $M(\chi_1^0) > 120 \text{ GeV}, M(\chi_1^+) > 220 \text{ GeV}$

High MET events

MET = 66.4 GeV

"Lennox"

Run 187800 Evt 82968527 Sat Jan 3 16:42:02 2004

E scale: 68 GeV

Run 187800 Evt 82968527 Sat Jan 3 16:42:02 2004

High MET events

MET = 105.2 GeV $M(\gamma\gamma) = 110 \text{ GeV}$

"Wizzle"

Run 175918 Evt 28681786 Mon Apr 21 22:37:15 2003

Run 175918 Evt 28681786 Mon Apr 21 22:37:15 2003

Summary

- No evidence for GMSB SUSY
- Most stringent limits in the world

- More work is ongoing to search for SUSY in $\gamma\gamma\ell$ +MET final state
 - Expect results in summer!