Interacting Dark Energy and the Cosmic Coincidence Problem

Pheno06 May 16, 2006 Mike Berger

> Phys.Rev.D73:083528,2006 e-Print Archive: gr-qc/0601086 with Hamed Shojaei

Cosmological Evolution

Two components

$$\dot{\rho}_{\Lambda} + 3H(1+w_{\Lambda})\rho_{\Lambda} = 0 ,$$

$$\dot{\rho}_m + 3H(1+w_m)\rho_m = 0$$

Define

$$\Omega_{\Lambda} = \frac{8\pi\rho_{\Lambda}}{3M_p^2 H^2}, \qquad \Omega_m = \frac{8\pi\rho_m}{3M_p^2 H^2}, \qquad \Omega_{\Lambda} + \Omega_m = 1$$

Evolution equation becomes

$$\frac{d\Omega_{\Lambda}}{dx} = -3\Omega_{\Lambda}(1 - \Omega_{\Lambda}) [w_{\Lambda} - w_m]$$

where $x = \ln(a/a_0)$.

Familiar fixed points at Ω_{Λ} =0,1.

Interacting Dark Energy

Conservation of the energy-momentum tensor

 $\dot{\rho}_{\Lambda} + 3H(1+w_{\Lambda})\rho_{\Lambda} = -Q ,$ $\dot{\rho}_m + 3H(1+w_m)\rho_m = Q$

Define effective equations of state

$$\dot{\rho}_{\Lambda} + 3H(1 + w_{\Lambda}^{\text{eff}})\rho_{\Lambda} = 0 ,$$

$$\dot{\rho}_{m} + 3H(1 + w_{m}^{\text{eff}})\rho_{m} = 0$$

Defining the interaction rate Γ

$$\Gamma = \frac{Q}{\rho_{\Lambda}}$$

$$w_{\Lambda}^{\text{eff}} = w_{\Lambda} + \frac{\Gamma}{3H}, \qquad w_{m}^{\text{eff}} = w_{m} - \frac{\rho_{\Lambda}}{\rho_{m}} \frac{\Gamma}{3H}$$

Evolution equation

Define ratio r
$$r = \frac{\rho_m}{\rho_{\Lambda}}$$
, $r = \frac{1 - \Omega_{\Lambda}}{\Omega_{\Lambda}}$, $\dot{r} = -\frac{\dot{\Omega}_{\Lambda}}{\Omega_{\Lambda}^2}$

$$\dot{r} = 3Hr\left[w_{\Lambda} - w_m + \frac{1+r}{r}\frac{\Gamma}{3H}\right] = 3Hr\left[w_{\Lambda}^{\text{eff}} - w_m^{\text{eff}}\right]$$

Evolution equation for the dark energy

$$\frac{d\Omega_{\Lambda}}{dx} = -3\Omega_{\Lambda}(1-\Omega_{\Lambda})\left[w_{\Lambda}^{\mathsf{eff}} - w_{m}^{\mathsf{eff}}\right]$$

where $x = \ln(a/a_0)$.

Depending on the form of the interaction, additional fixed points can arise (when the effective equations of state coincide).

Physically, the decay of dark energy into matter can produce a stable equilibrium.

Horava & Minic, PRL 85, 1610 (2000) Thomas, PRL 89, 091391 (2002) Holographic assumption

Specification of the dark energy density is equivalent to the specification of a length scale.

$$\rho_{\Lambda} = \frac{3c^2 M_p^2}{8\pi L_{\Lambda}^2}$$

The evolution equations imply a relationship between rates

$$\Gamma = 3H(-1 - w_{\Lambda}) + 2rac{\dot{L}_{\Lambda}}{L_{\Lambda}}$$

Two physical assumption for rates determines the third rate. Also

$$w_{\Lambda}^{\text{eff}} = -1 + \frac{2}{3H} \frac{\dot{L}_{\Lambda}}{L_{\Lambda}}$$

Which obviously reduces to the usual result for a cosmological constant.

Deceleration Parameter

Acceleration is determined

$$\frac{\dot{L}_{\Lambda}}{L_{\Lambda}} = -\frac{\dot{H}}{H} - \frac{1}{2}\frac{\dot{\Omega}_{\Lambda}}{\Omega_{\Lambda}}$$

Asmptotic value of the effective equation of state in terms of the deceleration parameter

$$w_{\Lambda}^{\text{eff}} = -\frac{1}{3} + \frac{2}{3}q - \frac{1}{3H}\frac{\dot{\Omega}_{\Lambda}}{\Omega_{\Lambda}}$$
$$w_{\Lambda}^{\text{eff}} \rightarrow -\frac{1}{3} + \frac{2}{3}q$$

Examples I

Hubble horizon

$$L_{\Lambda} = R_{\rm HH} = \frac{1}{H}$$
$$\rho_{\Lambda} = \frac{3c^2 M_p^2 H^2}{8\pi}$$

Effective equation of state:

$$w_{\Lambda}^{\mathsf{eff}} = -\frac{1}{3} + \frac{2}{3}q$$

Identically satisfied for all epochs.

Horava & Minic, PRL 85, 1610 (2000) Thomas, PRL 89, 091391 (2002)

Examples II

Past horizon:

$$R_{\mathsf{PH}} = a \int_0^t \frac{dt}{a} = a \int_0^a \frac{da}{Ha^2}$$

Future horizon:

$$R_{\mathsf{FH}} = a \int_{t}^{\infty} \frac{dt}{a} = a \int_{a}^{\infty} \frac{da}{Ha^2}$$

M. Li, Phys.Lett.B603,1(2004)

$$\frac{1}{H}\frac{\dot{L}_{\Lambda}}{L_{\Lambda}} = -\frac{\dot{H}}{H^{2}} \quad (\text{HH}) ,$$
$$= 1 + \frac{\sqrt{\Omega_{\Lambda}}}{c} \quad (\text{PH}) ,$$
$$= 1 - \frac{\sqrt{\Omega_{\Lambda}}}{c} \quad (\text{FH})$$

Holographic Length = Horizon

The PH and FH cases have an effective equations of state that is a function of Ω_Λ

$$\begin{split} w_{\Lambda}^{\text{eff}} &= -1 - \frac{2}{3} \frac{\dot{H}}{H^2} \quad (\text{HH}) , \\ &= -\frac{1}{3} + \frac{2}{3} \frac{\sqrt{\Omega_{\Lambda}}}{c} \quad (\text{PH}) , \\ &= -\frac{1}{3} - \frac{2}{3} \frac{\sqrt{\Omega_{\Lambda}}}{c} \quad (\text{FH}) , \end{split}$$

and $w_{\Lambda}^{\text{eff}} = -1$ for a cosmological constant.

Interactions

Assume the interaction is a function of Ω_Λ

$$\frac{\Gamma}{3H} = b^2 g(\Omega_{\Lambda})$$

Kim, Lee, Myung Phys.Lett.B632,605(2006)

Dimensionless constant $b^2 > 0$

$$w_m^{\text{eff}} = w_m - \frac{\Gamma}{3H} \frac{\Omega_{\Lambda}}{(1 - \Omega_{\Lambda})}$$

Take $w_m = 0$ and e.g. $g(\Omega_{\Lambda}) = 1/\Omega_{\Lambda}$:

$$w_m^{\rm eff} = -\frac{b^2}{(1 - \Omega_{\Lambda})}$$

Interactions

Qualitative behavior of solutions follows in a straightforward manner from the physical assumptions

Evolution example for interacting dark energy Future horizon (FH) and $\frac{\Gamma}{3H} = \frac{b^2}{\Omega_{\Lambda}}$, $b^2 = 0.2$

Other Interactions

Consider a more general set of interactions, e.g.

General behavior for various physical assumptions

 $n = \frac{1}{2}, 1, \frac{3}{2}, 2$ from top to bottom

Interacting Dark Energy
Future horizon (FH) and
$$\frac{\Gamma}{3H} = \frac{b^2}{\Omega_{\Lambda}^{1/2}}$$

Conclusions

- Holographic models give a generalized description of the size of the dark energy component.
- Decaying dark energy can lead to a stable equilibrium solution and hence address the coincidence problem.
- Interaction rate is related to the Hubble parameter H. Microscopic mechanism is unclear.
- Detailed tests versus the present and future observational data (Supernova, CMB) can distinguish between various scenarios (in progress).