W/Z Production at LHC & PDF Uncertainties

... *Or*

are we ready to make discoveries at the LHC

Fred Olness

SMU

Conspirators: P. Nadolsky, S. Berge, I Schienbein, J.-Y. Yu, W. Tung, S. Kretzer, J. Owens, S. Kuhlmann, J. Pumplin, H. Lai

Pheno2006 16 May 2006

- Theory says there is a Higgs signal at point B. Color the peak red.
- Theory says there is no Higgs signal at point B. Color the peak blue.
- This experimental data is in complete disagreement with theory. Color the error bars black and make them MUCH BIGGER.
- These points represent vertices of a Feynman diagram. Connect the points and color in a gauge invariant way.
- These points confirm the existence of SUSY. There is no time to color the points. Send your discovery to the NY Times immediately.

Discoveries at LHC

It is likely that the LHC will see many 3 σ and some 5 σ deviations

The goal is to determine if the cause is:
a) underestimating the theoretical uncertainty
b) underestimating the experimental uncertainty
c) a statistical fluctuation
d) a combination of all the above

- d) a combination of all the above
- e) "New Physics"*

* If the answer is e) proceed to Stockholm to claim your Nobel Prize

Precision PDF's are an essential ingredient for the Search For New Physics

Where are we

going with

this?

Where are we going with this ...

In CTEQ6: 40 PDF Sets allowed for uncertainty analysis

A powerful tool; but, beware the "Unknown Unknowns"

We'll take a look at PDF Uncertainties involved in:

- SUSY: Allow possibility of new light degrees of freedom
- Strange Quark: important for $Sin \theta_{W}$ determination
- W/Z Production: Benchmarks for Higgs discovery

.... ingredients for next generation of PDF's

Quark PDF

What is relative uncertainty on PDFs' ???

CTEQ6: Pumplin, Stump, Huston, Lai, Nadolsky, Tung, JHEP 0207, 012 (2002)

What is true uncertainty on s-quark PDF???

Warning: The Director General has determined the band of PDF's can greatly underestimate the true uncertainty

Electroweak Mixing Angle Measurement

Paschos-Wolfenstein Relation:

$$R^{-} \equiv \frac{\sigma(\nu_{\mu}N \rightarrow \nu_{\mu}X) - \sigma(\overline{\nu}_{\mu}N \rightarrow \overline{\nu}_{\mu}X)}{\sigma(\nu_{\mu}N \rightarrow \mu^{-}X) - \sigma(\overline{\nu}_{\mu}N \rightarrow \mu^{+}X)}$$

Controls the unification of Electromagnetic & Weak Forces

NuTeV Result:

 $\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0013(stat) \pm 0.0009(syst)$

G.P. Zeller, (NuTeV) et al., PRL 88: 091802 (2002); PRD 65: 111103 (2002)

Standard Model Fit:

 $\sin^2 \theta_W^{(on-shell)} = 0.2227 \pm 0.0004$ LEP EWWG

A 3 σ difference

What are the possible sources of uncertainty???

Dimuons are ideal signal of s(x)

di-muon	NuTeV	CCFR	Combined
Neutrino	5012	5030	10042
Anti-Nu	1458	1060	2518

* High stats & high precision data

* Best constraints on strange quark

M. Goncharov et al., NuTeV Collaboration PRD 64:110226 (2001)

NuTeV Collaboration (D. Mason for the collaboration). Moriond 2004, hep-ex/0405037

Global Fit: vary s(x) distribution

χ²/ DOF	CTEQ6M Constrained		Mixed	Free
CCFR Nu	1.02	0.85	0.79	0.72
CCFR Nu-bar	0.58	0.54	0.59	0.59
NuTeV Nu	1.81	1.70	1.55	1.44
NuTeV Nu-bar	1.48	1.30	1.15	1.13
BCDMS F2p	1.11	1.11	1.11	1.11
BCDMS F2d	1.10	1.10	1.10	1.11
H1 96/97	0.94	0.95	0.94	0.94
H1 98/99	1.02	1.03	1.03	1.03
ZEUS 96/97	1.14	1.14	1.14	1.15
NMC F2p	1.52	1.50	1.51	1.49
NMC F2d/F2p	0.91	0.91	0.91	0.91
NMC F2d/F2p <q<sup>2></q<sup>	1.05	1.07	1.06	1.03
CCFR F2	1.70	1.71	1.81	1.88
CCFR F3	0.42	0.42	0.44	0.42
E605	0.82	0.82	0.82	0.83
NA51	0.62	0.61	0.52	0.52
CDF ℓ Asym	0.82	0.83	0.82	0.82
E866	0.39	0.40	0.39	0.38
D0 Jets	0.71	0.65	0.70	0.67
CDF Jets	1.48	1.48	1.48	1.47
TOTAL	2173	2144	2142	2133

Total of 1991 data points

Reasonable χ^2 values (CTEQ6 did not fit di-muon data)

More parameters, lower value of χ^2

Only di-muon data is sensitive to s(x) !!!

Idea: v and v-bar data separately determine s and s-bar distributions

Only di-muon data is sensitive $to \ s(x) \ !!!$

Does this solve the $Sin\theta_{w}$ problem???

Required to resolve $\sin\theta_w$ **discrepancy**

- Tremendous new information on BOTH s+s and s-s
- Work is ongoing: extend to higher orders
- Include this information in next generation PDF sets

D. Mason for the NuTeV Collaboration; AIP Conf.Proc.792:851-854,2005 Kretzer, Mason, Olness PRD 65:074010 (2002)

Three-loop kernel generates asymmetry

 $\langle x(s-\overline{s})\rangle \approx -5 \times 10^{-4} @ Q^2 20 GeV^2$

S. Catani, D. de Florian, G. Rodrigo, W. Vogelsang; Phys.Rev.Lett. 93 (2004) 152003

W/Z/HIGGS

Higgs discovery relies on accurate predictions Precision M_w provides clues of Higgs

W & Z Production are "Benchmark" processes at LHC

W / Z / HIGGS Kinematics

What is relevant x region for W / Z / Higgs Production

Differential energy flow at small-x???

What are the implications for LHC???

Drell-Yan (qq \rightarrow W/Z/ γ /H \rightarrow ee) at DIS LHC is simply crossed DIS process Drell-Yan С Apply to LHC: W ν Use ResBos (Resummed Boson Production Code): S Implements Sudakov soft gluon resummation via CSS Collins, Soper Sterman Include small-x broadening in Sudakov exponent Additional small-x $e^{-S(q_T,Q)} \rightarrow e^{-S(q_t,Q)-\rho(x)q_T^2}$ broadening term Form taken from HERA data Crossing is valid. Only turns on $\rho(\mathbf{x}) = C_0 \left(\sqrt{\frac{1}{\mathbf{x}^2} + \frac{1}{\mathbf{x}_0^2} - \frac{1}{\mathbf{x}_0}} \right)$ See Collins & Metz $x_0 = 0.005$ $c_0 = 0.013$ at small-x

J. C. Collins and A. Metz, hep-ph/0408249.

J. C. Collins, D. E. Soper and G. Sterman, Nuc. Phys. B250, 199 (1985).

What is relevant x region for W / Z / Higgs Production

Kinematics of boson production $\sigma = f(x_A) f(x_B) \hat{\sigma}$

Central Rapidity

Forward Rapidity

Z Production: Tevatron & LHC

These uncertainties are not acceptable for "benchmark" processes

W Production at the Tevatron

Potentially, this effect can limit precision of M_W determination At Tevatron δM_W can be ~10-20 MeV in the central region, and ≥50 MeV in the forward region

W Production at the LHC

* Strange Quark PDF

This is real progress!!! We now can discriminate! Large uncertainties: Higher-Order Analysis in progress

 * W/Z Production: Provides important constraints on the PDF's Essential for exploration of Higgs, SUSY, and "New Physics" LHC probes smaller x values where PDF's are undetermined Tevatron can observe such effects in forward (y~2) region

> Need to accommodate these effects and uncertainties to make best use of HERA & Tevatron data. Also, be prepared to cross-check using early LHC data

Thanks to: P. Nadolsky, S. Berge, I. Schienbein, J.-Y. Yu, W. Tung, S. Kretzer, J. Owens, S. Kuhlmann, J. Pumplin, H. Lai, T.Bolton, P. Spentzouris, D. Mason, M. Shaevitz, K. McFarland, U.K. Yang, A. Barzarko

BACKUP

SLIDES

Z Production at the Tevatron

Generalized heavy degrees of freedom

SUSY PDF's

Use of PDF errors: an example

Consequences of SUSY

Inclusion of new strongly interacting particles (*e.g.*, *gluino*) affect PDF's at higher scales.

Bulk of PDF constraints are at low Q scales

Strong correlation between α_s gluino (and gluon) *Will affect gluon production of Higgs*

CTEQ6M

Strong Coupling Constant

New thresholds can significantly alter PDF's at large Q

Model Independent Constraints

E. L. Berger, P. M. Nadolsky, F. I. Olness and J. Pumplin. Phys. Rev. D71:014007,2005

HIGGS

Higgs discovery relies on accurate predictions

Effect on Higgs

Where do PDF's come from???

... like making sausage???

New elements for next generation of PDF's:

SUSY: Allows possibility of new light degrees of freedom

v-DIS di-muon data: Important for strange quark PDF

W/Z Production: *Calibrate at TeVatron or LHC*

DIS Cross Section Data: In contrast to F_{123} data

NNLO Kernels

Quark PDF

Contributions to Experimental Uncertainty

SOURCE OF UNCERTAINTY	$\delta \sin^2 heta_W$	$\delta R^{ u}$	$\delta R^{\overline{ u}}$			
Data Statistics	0.00135	0.00069	0.00159			
Monte Carlo Statistics	0.00010	0.00006	0.00010			
TOTAL STATISTICS	0.00135	0.00069	0.00159	Largest model uncertaints		
$\nu_e, \overline{\nu}_e$ Flux	0.00039	0.00025	0.00044			
Energy Measurement	0.00018	0.00015	0.00024	arises from		
Shower Length Model	0.00027	0.00021	0.00020	1 1 1		
Counter Efficiency, Noise, Size	0.00023	0.00014	0.00006	charm production		
Interaction Vertex	0.00030	0.00022	0.00017	and $s(\mathbf{x})$		
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057			
Charm Production, Strange Sea	0.00047	0.00089	0.00184			
Charm Sea	0.00010	0.00005	0.00004			
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022	0.00007	0.00026	1 1 1 1 00		
Radiative Corrections	0.00011	0.00005	0.00006	s and s-bar difference can		
Non-Isoscalar Target	0.00005	0.00004	0.00004	have large effect		
Higher Twist	0.00014	0.00012	0.00013	have large effect		
$ $ R_L	0.00032	0.00045	0.00101			
TOTAL MODEL	0.00064	0.00101	0.00212			
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272			
relative uncertainty is						

TABLE I. Uncertainties for both the single parameter $\sin^2 \theta_W$ fit and for the comparison of R^{ν} and $R^{\overline{\nu}}$ with model predictions.

... relative uncertainty is reduced for combination

G.P. Zeller, (NuTeV) et al., PRL 88: 091802 (2002); PRD 65: 111103 (2002)

What does the $\Delta s(x)$ strange PDF look like?

General range of the asymmetry

$$[S^{-}] \equiv \int_{0}^{1} x \{s(x) - \overline{s}(x)\}$$

$$+0.0040 \ge [S^{-}] \ge -0.0010$$

 $\Delta s(x)$: large uncertainty affected by:

- charm fragmentation
- charm mass
- PDF set

Olness, Pumplin, Stump, Huston, Nadolsky, Lai, Kretzer, Owens, Tung, Eur.Phys.J.C40:145-156,2005 Kretzer, Olness, Pumplin, Stump, Tung, Reno, PRL 93,041802 (2004)