QCD background for $Higgs \rightarrow \gamma \gamma$

Pavel Nadolsky

Argonne National Laboratory

May 16, 2006

Pavel Nadolsky (ANL)

Transverse momentum (q_T) distributions in $p_{\overline{p}}^{(\overline{p})} \rightarrow \gamma \gamma X$

We use q_T resummation to compute fully differential distributions of prompt $\gamma\gamma$ pairs (including q_T dependence) at NNLL accuracy

References

- 1. C. Balázs, E. Berger, P. N., C.-P. Yuan, hep-ph/0603037
- 2. C. Balazs, E. Berger, S. Mrenna, C.-P. Yuan, PRD 57, 6934 (1998)
- 3. C. Balazs, P. N., C. Schmidt, C.-P. Yuan, PLB 489, 157 (2000)
- 4. P.N., C. Schmidt, PLB 558, 63 (2003)

The results are implemented in a MC integrator program ResBos

SM Higgs boson search at the LHC

■ $gg \rightarrow H \rightarrow \gamma\gamma$ (via *t*-quark loop) is the crucial and challenging search mode for 115 < M_H < 140 GeV

■ QCD background processes for $\gamma\gamma$ production are complicated; must be understood for successful Higgs discovery and measurement of Higgs cross sections

An interesting QCD process on its own!

Higgs discovery significance is improved by...

Bruce Mellado, ATLAS Physics Workshop 07/06/05

... NLO corrections

- ... use of q_T of $\gamma\gamma$ pair as a discriminating variable
 - Significance increased by 20 – 40%
- ... combination of inclusive $H \rightarrow \gamma \gamma$ and $H \rightarrow \gamma \gamma + 1$ jet analyses
- ... optimization of γ detection and jet rejection

Higgs discovery significance is improved by...

Bruce Mellado, ATLAS Physics Workshop 07/06/05

... NLO corrections

- ... use of q_T of $\gamma\gamma$ pair as a discriminating variable
 - Significance increased by 20 – 40%
- ... combination of inclusive $H \rightarrow \gamma\gamma$ and $H \rightarrow \gamma\gamma + 1$ jet analyses
- ... optimization of γ detection and jet rejection

Knowledge of q_T optimizes Higgs boson search

(Abdullin et al., 1998; Balazs, P.N., Schmidt, Yuan; de Florian, Kunszt, 1999; Berger, Qiu, 2003)

M. Escalier, 2005; ResBos (2,3)

At $q_T \ll Q_r$ $\left(\frac{d\sigma}{dq_{7}^{2}}\right)_{q_{7}^{2}\ll Q^{2}}\approx \sum_{k=0}^{\infty}\alpha_{s}^{k}\left|c_{k}\delta(\vec{q}_{7})\right|$ $+q_{T}^{-2}\cdot\sum_{n=0}^{2k-1}d_{nk}\ln^{n}(Q^{2}/q_{T}^{2})$;

the large terms are summed to all orders in α_s by means of Collins-Soper-Sterman (CSS) resummation

Higgs $\langle q_T \rangle$ is enhanced by a larger soft (Sudakov) factor and gluon PDF shape in $gg \rightarrow H$ scattering

Knowledge of q_T optimizes Higgs boson search

(Abdullin et al., 1998; Balazs, RN., Schmidt, Yuan; de Florian, Kunszt, 1999; Berger, Qiu, 2003)

Higgs signal has a larger $\langle q_T \rangle$ than the background (a prediction of q_T resummation)

■ An efficient *q_T*-dependent likelihood analysis is possible

M. Escalier, 2005; ResBos (2,3)

q_T resummation for $\gamma\gamma$ production

(QCD background)

- new PQCD corrections to production in **direct** $q\bar{q} + qg$ and gg channels
- improved treatment of the **fragmentation** region
- improved model for nonperturbative resummed contributions (A. Konychev, **P. N**., PLB 633, 710 (2006))
 - ▶ non-pert. terms constrained by low-Q and Tevatron Z data
- automated matching at the ntuple level; optimized Monte-Carlo integration
 - new ResBos code is easy to use!

Direct diphotons

The dominant production mode; evaluated here up to full NLO/NNLL accuracy

 qg and gg channels are enhanced at x ~ Q²/s ≪ 1 by large gluon PDF
qq̄ and qg channels at NLO: Aurenche et al; Balley, Owens,

gg channel at NLO: Balazs, PN, Schmidt, Yuan; de Florian, Kunzst; Bern, De Freitas, Dixon; Bern, Dixon, Schmidt

Ohnemus

$gg \rightarrow \gamma \gamma X$ in the $q_T \rightarrow 0$ limit

$\bigcirc \mathcal{O}(\alpha_s^3)$ 1-loop 5-leg (pentagon) diagrams

- are computed in the helicity amplitude formalism
- numerically checked against the "sector decomposition" calculation (Binoth, Guillet, Mahmoudi)
- small-q_T limit is derived at the matrix-element level using the splitting amplitude method
- 2-loop box diagrams are added at $q_T = 0$; the full cross section is resummed in the $q_T \rightarrow 0$ limit

Fragmentation model

The *qg* fragmentation collinear singularity is removed by combination of quasi-experimental and smooth-cone isolation

- sufficient for description of small fragmentation contributions relevant for the Tevatron and LHC
- good agreement with the Tevatron data

q_T resummation for $\gamma\gamma$ production (QCD background)

- new PQCD corrections to production in **direct** $q\bar{q} + qg$ and gg channels
- I improved treatment of the **fragmentation** region
- improved model for nonperturbative resummed contributions (A. Konychev, P. N., PLB 633, 710 (2006))
 - ▶ non-pert. terms constrained by low-Q and Tevatron Z data
- automated matching at the ntuple level; optimized Monte-Carlo integration
 - new ResBos code is easy to use!

Comparison with the CDF Run-2 data

- The NLO prediction (blue) diverges at low q_T
- The resummed prediction (red) agrees with the data at all q_T; matches the NLO prediction at large q_T

$\gamma\gamma$ production at the LHC

qq: *qg*: *gg* = 30:50:20

(compare with $q\bar{q}: qg: gg = 70:20:10$ at the Tevatron)

 $\mathcal{O}(\alpha_s^2)$ corrections to qg are likely important $(\sigma_{NNLO}/\sigma_{NLO} \sim 20\%?)$

$\gamma\gamma$ production at the LHC

■ DIPHOX agrees with the resummation at large q_T ; exhibits integrable logarithmic singularities at $q_T < E_T^{iso}$ (E_T^{iso} is the isolation energy)

RESBOS shows a mild discontinuity at $q_T = E_T^{iso}$

 $\gamma\gamma$ production at the LHC

Conclusions

- Knowledge of q_T distributions is important for Higgs boson searches
 - Significance of $H \rightarrow \gamma \gamma$ discovery is improved by including information about q_T distributions (ongoing ATLAS studies)
 - The shape of $d\sigma/dq_{I}$ affects $d\sigma/dQ$ and other observables
 - Theory predictions for QCD $\gamma\gamma$ production are most reliable at $E_T^{iso} < q_T < Q$

Conclusions II

Resummation predicts normalization and shape of $d\sigma/d^3p_{\gamma_1}d^3p_{\gamma_2}$ for direct $\gamma\gamma$ production at NNLL/NLO.

E Large logs are resummed at $q_T \ll Q$

- At $q_T \gtrsim Q$, our results agree with NLO, as well as with DIPHOX calculation within the fragmentation model uncertainty of DIPHOX
- At $q_T < E_T^{iso}$, fragmentation contributions are removed by smooth-cone isolation
 - no logarithmic singularities at $q_T \neq 0!$
- Streamlined matching of resummed and NLO cross sections; optimized phase space integration

Conclusions II

Resummation predicts normalization and shape of $d\sigma/d^3p_{\gamma_1}d^3p_{\gamma_2}$ for direct $\gamma\gamma$ production at NNLL/NLO.

Large logs are resummed at $q_T \ll Q$

- At $q_T \gtrsim Q$, our results agree with NLO, as well as with DIPHOX calculation within the fragmentation model uncertainty of DIPHOX
- At $q_T < E_T^{iso}$, fragmentation contributions are removed by smooth-cone isolation
 - ▶ no logarithmic singularities at $q_T \neq 0$!
- Streamlined matching of resummed and NLO cross sections; optimized phase space integration

Accurate predictions for future measurements at the Tevatron and LHC!

Backup slides

Universality of nonperturbative contributions

A. Konychev, P. N., PLB 633, 710 (2006)

■ q_T factorization: initial-state nonperturbative contributions (~"intrinsic" $\langle k_T^2 \rangle \equiv a$) follow universal quasi-linear dependence on ln Q; this expectation is confirmed by the global analysis of Drell-Yan and Z boson data

- the observed In Q dependence agrees with the renormalon/lattice estimate
- at $Q \sim M_Z$, soft NP corrections dominate over collinear NP corrections
 - the model is employed to predict $\gamma\gamma$ cross sections

The NLO prediction (blue) diverges at small q_{I}

■ The resummed prediction (red) agrees with the data at all *q_T*; matches the NLO prediction at large *q_T*

The large- q_T "shoulder" in the data occurs at $Q \leq 25$ GeV, $Q \leq q_T$, $\Delta \varphi < \pi/2$ The DIPHOX cross section \blacksquare agrees with NLO RESBOS for the nominal $E_T^{iso} = 1$ GeV, same μ_F \blacksquare reproduces the "shoulder"

for $E_T^{iso} = 4$ GeV, smaller μ_F

▲ for $E_{\tau}^{iso} = 4$ GeV, the 1-fragmentation cross section increases by 400%

The large- q_T "shoulder" in the data occurs at $Q \leq 25$ GeV, $Q \leq q_T$, $\Delta \varphi < \pi/2$ The DIPHOX cross section agrees with NLO RESBOS for the nominal $E_T^{iso} = 1$ GeV, same μ_F reproduces the "shoulder" for $E_T^{iso} = 4$ GeV, smaller μ_F

▲ for $E_T^{iso} = 4$ GeV, the 1-fragmentation cross section increases by 400%

Other large corrections are known to contribute at $Q \leq q_T$ (not in the existing theory calculations)

■ The CDF "shoulder" is a low-Q effect, not relevant for the LHC Higgs searches

▲ can be removed by a $q_T \leq Q$ cut

Azimuthal angle separation $\Delta \varphi$

