NEUTRINO MASSES AND MIXING ... and Beyond

Concha Gonzalez-Garcia (Stony Brook & IFIC-Valencia) Pheno06 Symposium, Madison, May 2006

Introduction:

The Parameters of the New Minimal Standard Model Global 3 ν Mixing Analysis Update of Leptonic Mixing Learning about the Fluxes Constraints on Some Extensions of the NMSM: Tests of Symmetries: LI, WEP, CPT ... Mass Varying $\nu's$ in the Sun And What About LSND? Summary

ν in the SM

• The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

$(1,2)_{-\frac{1}{2}}$ (3,2)	$2)_{\frac{1}{6}}$	$(1, 1)_{-1}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\left(egin{array}{c} e \ oldsymbol{ u_e} \end{array} ight)_L \left(egin{array}{c} u^i \ d^i \end{array} ight)_L$	$\Big)_L$	e_R	u_R^i	d_R^i
$igg(egin{array}{c} \mu \ u_{\mu} \end{array}igg)_L igg(egin{array}{c} c^i \ s^i \end{array}igg)_L$	$\Big)_L$	μ_R	c_R^i	s_R^i
$\left(egin{array}{c} \dot{ au} \\ oldsymbol{ u_{ au}} \end{array} ight)_L \left(egin{array}{c} t^i \\ b^i \end{array} ight)_L$	$\Big)_L$	$ au_R$	t_R^i	n_R^i

There is no ν_R \Rightarrow Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau$

Т

ν in the SM

• The SM is a gauge theory based on the symmetry group

$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

$(1,2)_{-\frac{1}{2}}$ (3,2)	$\frac{1}{6}$ (1, 1	$)_{-1} (3,1)_{\frac{2}{3}}$	$\frac{2}{3}(3,1)_{-\frac{1}{3}}$	
$\left \left(\begin{array}{c} e\\ \mathbf{\nu_e}\end{array}\right)_L \left(\begin{array}{c} u^i\\ d^i\end{array}\right)$	$\Big)_L e_L$	$_{ m R}$ u^i_R	d_R^i	There is no ν_R
$\left(egin{array}{c} \mu \ u_{\mu} \end{array} ight)_L \left(egin{array}{c} c^i \ s^i \end{array} ight)_L$	$\Big _L = \mu$	$_R$ c^i_R	s_R^i	$\Rightarrow \text{Accidental global symmetry} \\ B \times L_e \times L_\mu \times L_\tau$
$\left(\begin{array}{c} \tau \\ \boldsymbol{\nu_{\tau}} \end{array}\right)_{L} \left(\begin{array}{c} t^{i} \\ b^{i} \end{array}\right)$	$ _L = au_L$	$_R$ t^i_R	n_R^i	$\Rightarrow \nu$ strictly massless

- When SM was built upper bounds on m_{ν} $m_{\nu_e} < 2.2 \text{ eV}$ $m_{\nu_{\mu}} < 190 \text{ KeV}$ $(\pi \to \mu \nu_{\mu})$ $m_{\nu_{\tau}} < 18.2 \text{ MeV}$ $(\tau \to n \pi \nu_{\tau})$ • Neutrinos are conjured to be messless and left banded
- Neutrinos are conjured to be massless and left-handed

- We have learned:
 - * Atmospheric ν_{μ} disappear (> 15 σ) most likely to ν_{τ}
 - * K2K: accelerator ν_{μ} disappear at $L \sim 250$ Km with E-distortion (~ 2.5–4 σ)
 - * MINOS: accelerator ν_{μ} disappear at $L \sim 735$ Km with E-distortion ($\sim 5\sigma$)
 - * Solar ν_e convert to ν_{μ} or ν_{τ} (> 7 σ)
 - * KamLAND: reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km with *E*-distortion ($\gtrsim 3\sigma$ CL)
 - * LSND found evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$

- We have learned:
 - * Atmospheric ν_{μ} disappear (> 15 σ) most likely to ν_{τ}
 - * K2K: accelerator ν_{μ} disappear at $L \sim 250$ Km with E-distortion (~ 2.5–4 σ)
 - * MINOS: accelerator ν_{μ} disappear at $L \sim 735$ Km with E-distortion ($\sim 5\sigma$)
 - * Solar ν_e convert to ν_{μ} or ν_{τ} (> 7 σ)
 - * KamLAND: reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km with *E*-distortion ($\gtrsim 3\sigma$ CL)
 - * LSND found evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$

All this implies that neutrinos are massive

- We have learned:
 - * Atmospheric ν_{μ} disappear (> 15 σ) most likely to ν_{τ}
 - * K2K: accelerator ν_{μ} disappear at $L \sim 250$ Km with E-distortion (~ 2.5–4 σ)
 - * MINOS: accelerator ν_{μ} disappear at $L \sim 735$ Km with E-distortion ($\sim 5\sigma$)
 - * Solar ν_e convert to ν_{μ} or ν_{τ} (> 7 σ)
 - * KamLAND: reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km with *E*-distortion ($\gtrsim 3\sigma$ CL)
 - * LSND found evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$

All this implies that neutrinos are massive

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu : (\nu \neq \nu^C)$ $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu}\overline{\nu_L}\nu_R + h.c.$

* NOT impose *L* conservation \Rightarrow Majorana ν ($\nu = \nu^{C}$) $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_{L}}\nu_{L}^{C} + h.c.$

Effects of ν **Mass**

- Neutrino masses must have kinematic effects at some level
- The charged current interactions of leptons are not diagonal (same as quarks)

Effects of ν **Mass**

- Neutrino masses must have kinematic effects at some level
- The charged current interactions of leptons are not diagonal (same as quarks)

• For example for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + +Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \mathbf{c_{23}} & \mathbf{s_{23}} \\ 0 & -\mathbf{s_{23}} & \mathbf{c_{23}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{13}} & 0 & \mathbf{s_{13}}e^{i\delta} \\ 0 & 1 & 0 \\ -\mathbf{s_{13}}e^{-i\delta} & 0 & \mathbf{c_{13}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{21}} & \mathbf{s_{12}} & 0 \\ -\mathbf{s_{12}} & \mathbf{c_{12}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}$$

- SM gauge invariance does not imply $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ symmetry
- Total lepton number $U(1)_L = U(1)_{Le+L_{\mu}+L_{\tau}}$ can be or cannot be still a symmetry depending on whether neutrinos are Dirac or Majorana

Effects of ν **Mass: Oscillations**

- If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$ is a linear combination of the mass eigenstates $(|\nu_{i}\rangle) : |\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_{i}\rangle$
- After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_i - E_j)L}{2} = 1.27 \frac{(m_i^2 - m_j^2)}{eV^2} \frac{L/E}{Km/GeV}$$

P_{αβ} depends on Theoretical Parameters
 Δm²_{ij} = m²_i - m²_j The mass differences
 U_{αj} The mixing angles (and Dirac phases)

and on Two Experimental Parameters:

- E The neutrino energy
- L Distance ν source to detector

No information on mass scale nor Majorana versus Dirac ν nature

Global Fits: Solar Neutrinos

- $*\Sigma(ext{Cl}) = 2.56 \pm 0.23$ (SNU) $*\Sigma(\mathrm{Ga}) = 68.1 \pm 3.75$ (SNU)
- * SK Zenith spectrum (44 Data points)

* SNO Ph-I D-N Spectrum (34 Points)

* SNO Ph-II CC D-N Spec (34 Points)

* SNO Ph-II ES, NC D&N Fluxes (4)

 $\phi_{\text{ES,D}}^{\text{SNO}} = 2.17 \pm 0.34 \pm 0.14$ $\phi_{\text{ES,N}}^{\text{SNO}} = 2.52 \pm 0.32 \pm 0.16$ $\phi_{\text{NC,D}}^{\text{SNO}} = 4.81 \pm 0.31 \pm 0.39$ $\phi_{\text{NC,N}}^{\text{SNO}} = 5.02 \pm 0.29 \pm 0.16$

Solar Neutrinos: Oscillation Solutions

 $\Delta m^2 = (6.3^{+2.3}_{-1.9}) \times 10^{-5} \text{ eV}^2 (1\sigma)$ $\tan^2 \theta = 0.45^{+0.05}_{-0.04}$

Gonzalez-Garcia

Terrestrial Test of LMA: KamLAND

• Search on $\overline{\nu_e}$ at L~ 180 km reactors, $E_{\overline{\nu}} \sim \text{few MeV}$: $\bar{\nu}_e + p \rightarrow n + e^+$

2002: Deficit $R_{\text{KLAND}} = 0.611 \pm 0.094$

Oscillation Analysis

2004: Significant Energy Distortion

 $\Delta m^2 = (7.9^{+0.4}_{-0.3}) \times 10^{-5} \text{ eV}^2 (1\sigma)$ $\tan^2 \theta = 0.46^{+0.20}_{-0.15} \quad (2.2^{+1.0}_{-0.6})$

Concha Gonzalez-Garcia

Concha Gonzalez-Garcia

 ν_e oscillation parameters compatible with $\overline{\nu}_e$: Sensible to assume CPT: $P_{ee} = P_{\overline{e}\overline{e}}$

 $\Delta m_{\odot}^{2} = \left(8^{+0.4}_{-0.5}\right) \times 10^{-5} \text{ eV}^{2} \quad (1\sigma)$ $\tan^{2} \theta_{\odot} = 0.45^{+0.05}_{-0.05}$

Atmospheric Neutrinos

Atmospheric Neutrinos: Oscillation Solutions

Atmospheric Neutrinos: Oscillation Solutions

• $\nu_{\mu} \rightarrow \nu_{e}$: Excluded at $\gtrsim 5\sigma$ (Bad fit to observed SM like ν_{e} distributions)

Strongly limited subdominant contribution in 3ν mixing because of CHOOZ

• $\nu_{\mu} \rightarrow \nu_{\text{sterile}}$: Disfavoured at $\gtrsim 3\sigma$ (Matter effects \Rightarrow Flatter upgoing- μ distribution) Limited subdominant contribution in 4ν mixing

ATM Test at Long Baseline Experiments

K2K 2004: spectral distortion

Confirmation of ATM oscillations

MINOS 2006: spectral distortion

Confirmation of ATM oscillations

Negative search with $\overline{\nu_e}$ source: Nuclear Reactor at $L \sim 1 \text{ km}$

Solar+Atmospheric+Reactor+LBL 3 ν **Oscillations**

 $\begin{array}{l} U: \text{ 3 angles, 1 CP-phase} \\ + (2 \text{ Majorana phases}) \end{array} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$

 2ν oscillation analysis $\Rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \ll \Delta M_{atm}^2 \simeq \pm \Delta m_{32}^2 \simeq \pm \Delta m_{31}^2$

• In the Hierarchical approximation $\Delta m_{\odot}^2 \ll \Delta M_{atm}^2$

* For $\theta_{13} = 0$ solar and atmospheric oscillations decouple \Rightarrow Normal \equiv Inverted

- Solar and KamLAND
- Atmospheric and K2K

$$\begin{array}{l} \rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \quad \theta_{12} = \theta_{\odot} \\ \rightarrow \Delta m_{31}^2 = \Delta M_{atm}^2 \quad \theta_{23} = \theta_{atm} \end{array}$$

- * For $\theta_{13} \neq 0$
 - CHOOZ: $P_{ee}^{CH} \simeq 1 4c_{13}^2 s_{13}^2 \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) |\Delta m_{31}^2| \gtrsim 8 \times 10^{-4} \text{ eV}^2 \Rightarrow \text{limit on } \theta_{13}$
 - Atmos : Independent of θ_{12} , Δm_{21}^2 . $\theta_{13} \Rightarrow$ some $\nu_{\mu} \rightarrow \nu_{e} \Rightarrow$ Limit on θ_{13}

- * For $\theta_{13} \neq 0$
 - $\text{CHOOZ: } P_{ee}^{CH} \simeq 1 4c_{13}^2 s_{13}^2 \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) |\Delta m_{31}^2| \gtrsim 8 \times 10^{-4} \text{ eV}^2 \Rightarrow \text{limit on } \theta_{13} \text{Atmos \& K2K}$

- * For $\theta_{13} \neq 0$
 - CHOOZ: $P_{ee}^{CH} \simeq 1 4c_{13}^2 s_{13}^2 \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) |\Delta m_{31}^2| \gtrsim 8 \times 10^{-4} \text{ eV}^2 \Rightarrow \text{limit on } \theta_{13}$ - Atmos & K2K & MINOS: some $\nu_{\mu} \rightarrow \nu_e \Rightarrow \text{Limit on } \theta_{13}$

- Solar and KamLAND: $P_{ee}^{3\nu} = c_{13}^4 P_{ee}^{2\nu}(\Delta m_{12}^2, \theta_{12}) + s_{13}^4 \Rightarrow$ Further limit on θ_{13}

Global Analysis: Three Neutrino Oscillations

z-Garcia

Global Analysis: Three Neutrino Oscillations

At 3σ

$$|U_{\rm LEP}| = \begin{pmatrix} 0.79 - 0.86 & 0.50 - 0.61 & < 0.20 \\ 0.19 - 0.53 & 0.39 - 0.72 & 0.58 - 0.82 \\ 0.22 - 0.55 & 0.43 - 0.74 & 0.55 - 0.81 \end{pmatrix}$$

$$\sim \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\lambda) & \frac{1}{\sqrt{2}}(1-\lambda) & \epsilon \\ \frac{1}{2}(1-\lambda+\Delta+\epsilon\cos\delta) & \frac{1}{2}(1+\lambda+\Delta-\epsilon\cos\delta) & \frac{1}{\sqrt{2}}(1-\Delta) \\ \frac{1}{2}(1-\lambda-\Delta-\epsilon\cos\delta) & \frac{1}{2}(1+\lambda-\Delta+\epsilon\cos\delta) & \frac{1}{\sqrt{2}}(1+\Delta) \end{pmatrix}$$

At 1 σ

 $\lambda = \mathcal{O}(0.2)(1 \pm 10\%) \quad \Delta = \mathcal{O}(0) \pm 10\% \quad \epsilon \le 0.12 \quad -1 \le \cos \delta \le 1$

Learning How the Sun Shines

- Solar ν experiments measure a convolution $Obs_{\odot} = P_{eX}^{sun} \otimes Sun$ Properties
- KamLAND determines independently $P_{eX}^{\text{vac}}(\text{osc param}) \Rightarrow P_{eX}^{\text{sun}}(\text{osc param})$ \Rightarrow Back to study Sun Properties from Obs_{\odot}

Learning How the Sun Shines

- Solar ν experiments measure a convolution $Obs_{\odot} = P_{eX}^{sun} \otimes Sun$ Properties
- KamLAND determines independently $P_{eX}^{\text{vac}}(\text{osc param}) \Rightarrow P_{eX}^{\text{sun}}(\text{osc param})$ \Rightarrow Back to study Sun Properties from Obs_{\odot}
- The Sun shines converting protons into α , e^+ and $\nu's$ $4p \rightarrow {}^{4}He + 2e^+ + 2\nu_e + \gamma$ $4m_p - m_{{}^{4}He} - 2m_e \simeq 26$ MeV Thermal energy mostly in γ pp chain: CNO cycle:

• First proposal by Bethe (1939) was that CNO dominated

"It is shown that the most important source of energy in ordinary stars is the reactions of carbon and nitrogen with protons."

• Improved Solar Model& nuclear reaction data \Rightarrow Sun shines primarily by p-p

• Can this be tested experimentally?

• First proposal by Bethe (1939) was that CNO dominated

"It is shown that the most important source of energy in ordinary stars is the reactions of carbon and nitrogen with protons."

• Improved Solar Model& nuclear reaction data \Rightarrow Sun shines primarily by p-p

- Can this be tested experimentally? Difficult
- Radiochemical experiments sensitive to CNO fluxes But do not measure $E \Rightarrow$ only integrated flux above E_{th}
- Oscillations modify the E dependence of detected fluxes
 - \Rightarrow Possible suppression of CNO fluxes \Rightarrow TILL RECENTLY, ANSWER: No limit

How the Sun Shines? Present Answer

Bahcall, MCG-G, Peña-Garay, astro-ph/0212331

 $\alpha_i \Phi_i$

• Fit solar (and KamLAND) data for:

 -2ν oscillations Δm^2 , $\tan^2 \theta + 8$ free solar ν fluxes under Luminosity constraint

$$\frac{L_{\odot}}{4\pi (A.U.)^2} = \sum_{i=1}^{8} \alpha_i \Phi_i \qquad \alpha_i \equiv \text{Energy released in reaction i}$$

• Study the quality of fit as a function of: $L_{CNO} = \sum_{i=N,O,F}$

How the Sun Shines? Present Answer

Bahcall, MCG-G, Peña-Garay, astro-ph/0212331

 $\alpha_i \Phi_i$

- Fit solar (and KamLAND) data for:
 - -2ν oscillations Δm^2 , $\tan^2 \theta + 8$ free solar ν fluxes under Luminosity constraint

$$\frac{L_{\odot}}{4\pi (A.U.)^2} = \sum_{i=1}^{8} \alpha_i \Phi_i \qquad \alpha_i \equiv \text{Energy released in reaction i}$$

• Study the quality of fit as a function of: $L_{CNO} =$

Resulting Limit:

$$rac{L_{
m CNO}}{L_{\odot}}~<~7.3\%$$

i=N,O,F

Testing the Solar Luminosity with Neutrinos

$$\frac{L_{\odot}(\nu - \text{inferred})}{L_{\odot}} = 1.4^{+0.2}_{-0.3}(^{+0.7}_{-0.6})$$

In ATM analysis one uses that the expected number of ATM ν events

 $N_{\beta} = n_t T \sum_{\alpha} \int \frac{d^2 \Phi_{\alpha}}{dE_{\nu} d\cos\theta_{\nu}} \kappa_{\alpha}(h) \frac{d\sigma}{dE_{l,beta}} \varepsilon(E_{\nu}, E_{l,\beta}) dE_{\nu} dE_{l,\beta} P_{\alpha\beta}(E_{\nu}, \cos\theta)) d\cos\theta_{\nu} dh$

 $\Phi_{\alpha} \equiv \operatorname{Neutrino Flux}$

 $\frac{d\sigma}{dE_{l,\beta}} \equiv \text{Neutrino Interaction Cross Section}$ $P_{\alpha\beta}(E_{\nu}, \cos\theta)) \equiv \text{Oscillation Probability}$

 $\kappa_{\alpha} \equiv \nu \operatorname{Production} \operatorname{Point} \operatorname{Distribution}$ $\varepsilon(E_{\nu}, E_{l,\beta}) \equiv \operatorname{Detection} \operatorname{Efficiency}$

Concha Gonzalez-Garcia

In ATM analysis one uses that the expected number of ATM ν events

 $N_{\beta} = n_t T \sum_{\alpha} \int \frac{d^2 \Phi_{\alpha}}{dE_{\nu} d\cos\theta_{\nu}} \kappa_{\alpha}(h) \frac{d\sigma}{dE_{l,beta}} \varepsilon(E_{\nu}, E_{l,\beta}) dE_{\nu} dE_{l,\beta} P_{\alpha\beta}(E_{\nu}, \cos\theta)) d\cos\theta_{\nu} dh$

 $\Phi_{\alpha} \equiv \text{Neutrino Flux}$ $\frac{d\sigma}{dE_{l,\beta}} \equiv \text{Neutrino Interaction Cross Section}$ $P_{\alpha\beta}(E_{\nu}, \cos\theta)) \equiv \text{Oscillation Probability}$

 $\kappa_{\alpha} \equiv \nu \operatorname{Production} \operatorname{Point} \operatorname{Distribution}$ $\varepsilon(E_{\nu}, E_{l,\beta}) \equiv \operatorname{Detection} \operatorname{Efficiency}$

Concha Gonzalez-Garcia

The ATM fluxes are inputs given by several groups. Schematically:

Bartol Group: Barr, Gaisser, Lipari, Robbins Stanev Honda Group: Honda, Kajita, Kasahara, Midorikawa

$$\Phi_{\nu} = \sum_{A} \Phi_{A} \otimes R_{A} \otimes Y_{A \to \nu}$$

 $\Phi_A \equiv \text{Cosmic ray spectrum}$ $R_A \equiv \text{Geomagnetic Cutoff}$ $Y_{A \to \nu} \equiv \text{Cross Section for}$ $A + A_{atmos} \to \nu + X$

 $N_{\beta} = n_t T \sum_{\alpha} \int \frac{d^2 \Phi_{\alpha}}{dE_{\nu} d\cos\theta_{\nu}} \kappa_{\alpha}(h) \frac{d\sigma}{dE_{l,beta}} \varepsilon(E_{\nu}, E_{l,\beta}) dE_{\nu} dE_{l,\beta} P_{\alpha\beta}(E_{\nu}, \cos\theta)) d\cos\theta_{\nu} dh$

- Question? Can we Extract (\equiv Deconvolute) Φ_{α} from ATM ν data?
 - * Answer : You need:
 - Independent knowledge of oscillation parameters (OK)
 - General enough analytical parametrization of fluxes (MISSING)

 $N_{\beta} = n_t T \sum_{\alpha} \int \frac{d^2 \Phi_{\alpha}}{dE_{\nu} d\cos\theta_{\nu}} \kappa_{\alpha}(h) \frac{d\sigma}{dE_{l,beta}} \varepsilon(E_{\nu}, E_{l,\beta}) dE_{\nu} dE_{l,\beta} P_{\alpha\beta}(E_{\nu}, \cos\theta)) d\cos\theta_{\nu} dh$

- Question? Can we Extract (\equiv Deconvolute) Φ_{α} from ATM ν data?
 - * Answer : You need:
 - Independent knowledge of oscillation parameters (OK)
 - General enough analytical parametrization of fluxes (MISSING)
 Or Neural Network parametrization of fluxes (J. Rojo, M. Maltoni, MCG-G, in preparation)
- Our First Attempt: Extract only E dependence using SK data

 $\Rightarrow \Phi_{\alpha,net}(E_{\nu},\cos\theta) = F_{net}(E_{\nu})\Phi_{\alpha,calc}(E_{\nu},\cos\theta)$

Procedure:

(1) Generate N_R Replicas of Data according to all uncertainties: Statistical, Systematic, Theo from Cross Section . . .

(2) Train Network to each Replica k to get best fit flux $\Phi_{\alpha}^{(\text{net})(k)}(E_{\nu}, \cos\theta)$ \Rightarrow Chose some statistical criterion to define 'best fit' avoiding overlearning

(3) Define average and range of fluxes:

$$\left\langle \Phi_{\alpha}^{(\text{net})} \right\rangle_{\text{rep}} (E_{\nu}, \cos \theta) = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \Phi_{\alpha}^{(\text{net})(k)} \qquad \sigma_{\Phi}^2 = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \Phi^{(\text{net})(k)^2} - \left\langle \Phi^{(\text{net})} \right\rangle_{\text{rep}}^2$$

Extracted ATM Fluxes from SK Data

(J. Rojo, M. Maltoni, MCG-G, preliminary)

Some New Physics in ATM ν **-Oscillations**

- Oscillations are due to:
 - Missalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$

Some New Physics in ATM ν -Oscillations

- Oscillations are due to:
 - Missalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$
- ν masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin, Leung 01 Non universal coupling of neutrinos $\gamma_1 \neq \gamma_2$ to gravitational potential ϕ Violation of Lorentz Invariance (VLI): Coleman, Glashow 97 Non universal asymptotic velocity of neutrinos $c_1 \neq c_2 \Rightarrow E_i = \frac{m_i^2}{2n} + c_i p$ Interactions with space-time torsion: Sabbata, Gasperini 81 Non universal couplings of neutrinos $k_1 \neq k_2$ to torsion strength Q

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99 due to CPT violating terms: $\bar{\nu}_L^{\alpha} b_{\mu}^{\alpha\beta} \gamma_{\mu} \nu_L^{\beta} \Rightarrow E_i = \frac{m_i^2}{2n} \pm b_i$ $\lambda = \pm \frac{2\pi}{2\pi}$

Non-standard ν interactions in matter: Wolfenstein 78 $G_F \varepsilon_{\alpha\beta} (\overline{\nu_{\alpha}} \gamma^{\mu} \nu_{\beta}) (\overline{f} \gamma_{\mu} f)$

$$\lambda = rac{2\pi}{2\sqrt{2}G_f N_f \sqrt{arepsilon_{lphaeta}^2 + (arepsilon_{lphalpha} - arepsilon_{etaeta})^2/4}$$

$$\lambda = rac{\pi}{E|\phi|\delta\gamma}$$

$$\lambda = \frac{2\pi}{E\Delta c}$$
$$\lambda = \frac{2\pi}{Q\Delta k}$$

$$\lambda = rac{\pi}{E|\phi|\delta\gamma}$$

ATM ν 's: Subdominant NP Effects

• Questions:

– Do these effects affect our determination of oscillation parameters?

- Can we limit these effects?

Concha Gonzalez-Garcia

ATM ν 's: Subdominant NP Effects

MCG-G, M. Maltoni hep-ph/0404085

Future Bounds on New Physics: ν **Telescopes**

 $E_{\nu,thres} \gtrsim 100 \text{ GeV}$

Large # ATM $\nu's$

(~ $10^5 \nu_{\mu}$ events/yr at ICECUBE)

 \Rightarrow Standard oscillations suppressed

 \Rightarrow Better sensitivity to Oscillations due to NP

Expected Sensitivity at IceCube

The Dark Energy Problem – ν **Connection**

 $egin{aligned} \Omega_{\Lambda} &= 0.74 \pm 0.02 \ \Omega_m &= 0.26^{+0.01}_{-0.03} \ \Omega_b &= 0.047 \pm 0.004 \ \Omega_{
u} &= 0.0081^{+0.0032}_{-0.0081} \end{aligned}$

- Big Question: What is Λ?
 We do not know
- Next Question: Why now $\Omega_{\Lambda} \sim \Omega_m$? We do not know
- Next Question: Why now $\Omega_{\Lambda} \sim \Omega_{\nu}$? (within factor 10^3)

May be Ω_{Λ} and Ω_{ν} are related and "track" each other

(Fardon, Nelson and Weiner, astro-ph/0309800)

Mass Varying Neutrinos: Framework

• Ingredients: neutrinos ν and a scalar field the acceleron \mathcal{A}

 $\mathcal{L} = m_{\nu}(\mathcal{A})\nu\nu + V_{tot}(\mathcal{A})$

• In presence of a ν background:

 $V_{tot}(\mathcal{A}) \equiv V_{tot}(m_{\nu}(\mathcal{A}))$

$$= V_{de}(m_{\nu}(\mathcal{A})) + V_{\nu}(m_{\nu}(\mathcal{A}))$$

$$V_{de}(m_{\nu}) = \Lambda^4 f\left(\frac{m_{\nu}}{\mu}\right) (\Lambda \sim 10^{-3} \text{ eV})$$

$$V_{m{
u}}(m_{m{
u}}) = \int rac{d^3k}{(2\pi)^3} \sqrt{k^2 + m_{m{
u}}^2} f_{m{
u}}(k)$$

Gonzalez-Garcia

Mass Varying Neutrinos: Framework

• Ingredients: neutrinos ν and a scalar field the acceleron \mathcal{A}

 $\mathcal{L} = m_{\nu}(\mathcal{A})\nu\nu + V_{tot}(\mathcal{A})$

• In presence of a ν background:

 $V_{tot}(\mathcal{A}) \equiv V_{tot}(m_{\nu}(\mathcal{A}))$

$$= V_{de}(m_{\nu}(\mathcal{A})) + V_{\nu}(m_{\nu}(\mathcal{A}))$$

$$V_{de}(m_{\nu}) = \Lambda^4 f\left(\frac{m_{\nu}}{\mu}\right) (\Lambda \sim 10^{-3} \text{ eV})$$

$$V_{m{
u}}(m_{m{
u}}) ~=~ \int rac{d^3k}{(2\pi)^3} \sqrt{k^2 + m_{m{
u}}^2} f_{m{
u}}(k)$$

- In cosmic ν background $(n^{C\nu B} \simeq 112 \text{ cm}^{-3})$ $V_{\nu}(m_{\nu}) = m_{\nu} n^{C\nu B}$
- Both $\rho_{DE} \equiv V_{tot,min}$ and $m_{\nu} \equiv m_{\nu}^{0}$ fixed by the minimum condition

 $V_{de}^{\prime}(m_{\nu}^0)+n^{C\nu B}=0$

Gonzalez-Garcia

Mass Varying Neutrinos in the Sun

Gonzalez-Garcia

M. Cirelli, M.C.G-G, C. Peña-Garay hep-ph/0503028

In the cosmic ν background $(n^{C\nu B} \simeq 112 \text{ cm}^{-3})$ $m_{\nu} \equiv m_{\nu}^{0}$ with $V'_{dc}(m_{\nu}^{0}) + n^{C\nu B} = 0$

Effective mass difference depends on neutrino mass scale $m_{0,1}$

Mass Varying Neutrinos in the Sun

Gonzalez-Garcia

Effective mass difference

Survival Probability

Fit worsens for degenerate ν 's

Mass Varying Neutrinos in the Sun (II)

Kaplan, Nelson and Weiner hep/ph0401099

If acceleron \mathcal{A} also couples to matter fields f

$$\mathcal{L} = \sum_{ij} \lambda^{
u}_{ij} ar{
u}_i
u_j \mathcal{A} + \sum_f \lambda^f ar{f} f \mathcal{A} + V_{de}(\mathcal{A})$$

Mass Varying Neutrinos in the Sun (II)

Kaplan, Nelson and Weiner hep/ph0401099

If acceleron \mathcal{A} also couples to matter fields f

$$\mathcal{L} = \sum_{ij} \lambda^{
u}_{ij} ar{
u}_i
u_j \mathcal{A} + \sum_f \lambda^f ar{f} f \mathcal{A} + V_{de}(\mathcal{A})$$

Neutrino mass also depends on the background matter densities $n_f(r)$

$$\begin{split} m_{ij}^{\nu}(r) &= m_{\nu,i}^{0} \delta_{ij} - M_{ij}^{\nu}(r), \\ M_{ij}^{\nu}(r) &= \frac{\lambda_{ij}^{\nu}}{m_{\mathcal{A}}^{2}} \sum_{f} \lambda^{f} n_{f}(r) \sim \alpha_{ij} \left[\frac{\rho(r)}{(\text{gr/cm}^{3})} \right] \\ \alpha &\sim 4.8 \times 10^{23} \, \lambda^{\nu} \, \lambda^{N} \, \left(\frac{10^{-7} \text{eV}}{m_{\mathcal{A}}} \right)^{2} \, \text{eV} \end{split}$$

(Tests of gravitational inverse square law $\Rightarrow \lambda^n, \lambda^p \lesssim 10^{-21}$ for $m_A \gtrsim 10^{-11}$ eV)

Mass Varying Neutrinos in the Sun (II)

Kaplan, Nelson and Weiner hep/ph0401099

If acceleron \mathcal{A} also couples to matter fields f

$$\mathcal{L} = \sum_{ij} \lambda^{
u}_{ij} ar{
u}_i
u_j \mathcal{A} + \sum_f \lambda^f ar{f} f \mathcal{A} + V_{de}(\mathcal{A})$$

Neutrino mass also depends on the background matter densities $n_f(r)$

$$\begin{split} m_{ij}^{\nu}(r) &= m_{\nu,i}^{0} \delta_{ij} - M_{ij}^{\nu}(r), \\ M_{ij}^{\nu}(r) &= \frac{\lambda_{ij}^{\nu}}{m_{\mathcal{A}}^{2}} \sum_{f} \lambda^{f} n_{f}(r) \sim \alpha_{ij} \left[\frac{\rho(r)}{(\text{gr/cm}^{3})} \right] \\ \alpha &\sim 4.8 \times 10^{23} \, \lambda^{\nu} \, \lambda^{N} \, \left(\frac{10^{-7} \text{eV}}{m_{\mathcal{A}}} \right)^{2} \, \text{eV} \end{split}$$

(Tests of gravitational inverse square law $\Rightarrow \lambda^n, \lambda^p \lesssim 10^{-21}$ for $m_A \gtrsim 10^{-11}$ eV)

This new matter density dependence affects solar neutrino evolution

3) Fit worsens for large α 's \Rightarrow bound on acceleron couplings

$$\lambda^{\nu} \lambda^{N} \left| \left(\frac{10^{-7} \,\mathrm{eV}}{m_{\mathcal{A}}} \right)^{2} \le 3.0 \times 10^{-28} \quad (90\% CL)$$

MCG-G, de Holanda, Zukanovich hep-ph/0511093

LSND

- The only short distance signal for oscillation: L = 30 m with $\langle E_{\nu} \rangle \sim 30$ MeV
- Observed $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ with probability $\langle P_{e\mu} \rangle = (0.26 \pm 0.07 \pm 0.05)\%$
- *Karmen* searched for the same signal and did not observe oscillations

LSND Try I: Sterile Neutrinos and 4\nu Mixing

• Motivation: To explain LSND

$$\Delta m^2_{\rm LSND} \gg \Delta m^2_{atm} \gg \Delta m^2_{\odot}$$

- To fit solar, atmospheric and LSND $\Rightarrow 3 \Delta m^2 \Rightarrow 4$ th sterile ν
- U: 6 mixing angles and 3 CP Dirac phases and 3 Majorana phases
- 6 mass spectra of two type:

		atmos solar	solar atmos	atmos	solar
LSND	LSND			LSND	LSND
		LSND	LSND		
atmos	solar				
solar	atmos			solar	atmos
	3 +	- 1		2 +	- 2

LSND Try I: Sterile Neutrinos and 4\nu Mixing

3 + 1

 $\sin^2 2\theta_{\rm LSND} = 4|U_{e4}|^2|U_{\mu4}|^2$ $|U_{e4}|^2$ constrained by Bugey $|U_{\mu4}|^2$ constrained by CDHSW+ATM Maltoni et al hep-ph/0107150 NEV + atm + K2K 10^{1} Δm^2_{LSND} [eV²] SND global LSND DAR 10^{0} 99% C 10⁻¹ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10^{-4} $\sin^2 2\theta_{\rm LSND}$ Only tiny regions at 99%CL Also constrained by cosmo bound on $\sum m_{\nu_i}$

LSND Try I: Sterile Neutrinos and 4\nu Mixing

3 + 1

 $\sin^2 2\theta_{\rm LSND} = 4|U_{e4}|^2|U_{\mu4}|^2$ $|U_{e4}|^2$ constrained by Bugey $|U_{\mu4}|^2$ constrained by CDHSW+ATM Maltoni et al hep-ph/0107150 NEV + atm + K2K 10^{1} Δm^2_{LSND} [eV²] SND global LSND DAR 10^{0} 99% CI 10⁻¹ 10⁻² 10⁻³ 10⁻¹ 10^{-4} 10^{0} $\sin^2 2\theta_{\rm LSND}$ Only tiny regions at 99%CL Also constrained by cosmo bound on $\sum m_{\nu_i}$ 2+2

Mixed active-sterile oscillations Naively: Solar: $\nu_e \rightarrow \cos \eta \, \nu_s + \sin \eta \, \nu_\tau$ Atm: $\nu_\mu \rightarrow \sin \eta \, \nu_s - \cos \eta \, \nu_\tau$

Disagreement at more than 4σ

LSND Try II : CPT Violation

Concha Gonzalez-Garcia \overline{m}_3 _____

CPT violation: $\rightarrow \nu$'s and $\bar{\nu}$'s can have different masses

 \Rightarrow Possibility of accommodating LSND?

Atmospheric, LSND

Neutrinos

LSND Try II : CPT Violation

CPT violation:

 $\Rightarrow \nu$'s and $\overline{\nu}$'s can have different masses \Rightarrow Possibility of accommodating LSND?

But Data does not support this:

ATM $\Rightarrow \nu_{\mu}$ and $\bar{\nu}_{\mu}$'s similar wavelength Solar ν_{e} and KamLAND $\bar{\nu}_{e}$ similar Δm^{2}

Concha Gonzalez-Garcia

m,

Neutrinos

Atmospheric, LSND

LSND Try II : CPT Violation

CPT violation:

 $\Rightarrow \nu$'s and $\bar{\nu}$'s can have different masses \Rightarrow Possibility of accommodating LSND? But Data does not support this:

ATM $\Rightarrow \nu_{\mu}$ and $\bar{\nu}_{\mu}$'s similar wavelength Solar ν_e and KamLAND $\bar{\nu}_e$ similar Δm^2

All-But-LSND and LSND regions incompatible at $\gtrsim 3\sigma$

Concha Gonzalez-Garcia

m,

LSND III: What it is Claimed to Work

• 3 active plus 2 light sterile neutrino mixing

Sorel, Conrad and Shaevitz, hep-ph/0305255

- 3 active plus 1 light sterile neutrino mixing plus CPT violation Barger, Marfatia and Whisnant hep-ph/0308299
- 3 active plus 1 light sterile neutrino mixing plus MaVaN's interactions Barger, Marfatia and Whisnant hep-ph/0509163
- 3 active plus 1 light sterile neutrino mixing plus decay

Ma, Rajasekaran and Stancu hep-ph/9908489 Palomares-Ruiz,Pascoli and Schewtz, hep-ph/0505216

• 3 active plus 1 light sterile neutrino with extra dimensions

Pas, Pakvasa and Weiler, hep-ph/0504096

• 3 active plus quantum decoherence

Baremboim, Mavromatos, Sarkar and Waldron-Lauda, hep-ph/0603028

Summary

- Big experimental effort has been devoted to proof ν oscillations beyond doubt
- Solar and atmospheric signals are being confirmed with 'man-made' neutrino beams from reactor and accelerators.
- Solar, Reactor, Atmospheric and LBL data: Perfect in 3ν -oscillations
- After all existing experiments still many open questions: What is the value of θ₁₃? Is there CP violation in the leptons The absolute scale of neutrino mass Are neutrinos Dirac or Majorana particles?
- ν oscillation data already provides interesting constraints on: Solar Physics Atmospheric Fluxes Fundamental symmetries: LI, WEP, CPT ν models for Dark Energy ...
- Accommodating LSND: A problem