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� in the SM

� The SM is a gauge theory based on the symmetry group
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� We have learned:

� Atmospheric � " disappear ( � 
 �� ) most likely to � %

� K2K: accelerator � " disappear at , � 
 �� Km with � -distortion ( � 
� � – 	 � )

� MINOS: accelerator � " disappear at , � 
 � � Km with � -distortion ( � �� )

� Solar � � convert to � " or � % ( � 
� )

� KamLAND: reactor � � disappear at , � 
 � � Km with � -distortion ( � � � CL)

� LSND found evidence for � " � � �

All this implies that neutrinos are massive

Minimal Extensions to give Mass to the Neutrino:

Introduce AND impose conservation Dirac : ( )

NOT impose conservation Majorana ( )
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� LSND found evidence for � " � � �
All this implies that neutrinos are massive
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Effects of � Mass
� Neutrino masses must have kinematic effects at some level

� The charged current interactions of leptons are not diagonal (same as quarks)
�
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For example for 3 ’s : 3 Mixing angles + 1 Dirac Phase + +Majorana Phases

SM gauge invariance does not imply symmetry

Total lepton number can be or cannot be still a
symmetry depending on whether neutrinos are Dirac or Majorana
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Effects of � Mass: Oscillations
� If neutrinos have mass, a weak eigenstate � � � � produced in � � � � � � � � � �

is a linear combination of the mass eigenstates ( � � � � ) : � � � � �
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Global Fits: Solar Neutrinos
� � ��� � � � 
� �� � � � 
 � (SNU)

� � ��� � � � � �� 
 � � � 
 � (SNU)

� SK Zenith spectrum (44 Data points)

� SNO Ph-I D-N Spectrum (34 Points)
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Solar Neutrinos: Oscillation Solutions
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Terrestrial Test of LMA: KamLAND
� Search on � � at L � 180 km reactors, � � � few MeV: �
� � � � � ( � ��
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Atmospheric Neutrinos
� Complete SKI data:
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Atmospheric Neutrinos: Oscillation Solutions

� � " � � % : best channel

, � � �� 
� � �� � � �� � � � � 	 
 � � � eV �

� � � � � � 
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: Excluded at 5 (Bad fit to observed SM like distributions)

Strongly limited subdominant contribution in 3 mixing because of CHOOZ

: Disfavoured at ( Matter effects Flatter upgoing- distribution )

Limited subdominant contribution in 4 mixing
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Atmospheric Neutrinos: Oscillation Solutions

� � " � � % : best channel
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K2K � � at KEK Kamiokande L=250 km

MINOS � � at Fermilab Soundan L=735 km

Opera/Icarus � � at CERN Gran Sasso L=740 km

K2K 2004: spectral distortion

Confirmation of ATM oscillations

MINOS 2006: spectral distortion
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CHOOZ

Negative search with � � source: Nuclear Reactor at , � 
 km
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Solar+Atmospheric+Reactor+LBL 3 � Oscillations

� : 3 angles, 1 CP-phase
+ (2 Majorana phases)
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� For � � � ��� �
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Global Analysis: Three Neutrino Oscillations

At 3�
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Learning How the Sun Shines

– Solar � experiments measure a convolution � ' � �

� * ����� � �� �� � � 	�
 � �� 
 �

– KamLAND determines independently * � ���� � �� � 	 � � �
 � � * ����� � �� � 	 � � � 
 �

� Back to study Sun Properties from � ' � �

The Sun shines converting protons into , and

MeV Thermal energy mostly in

pp chain: CNO cycle:
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Learning How the Sun Shines
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– KamLAND determines independently * � ���� � �� � 	 � � �
 � � * ����� � �� � 	 � � � 
 �

� Back to study Sun Properties from � ' � �

� The Sun shines converting protons into � , �� and �� �

	 � � � � � � 
 �� � 
 � � � 	
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 � MeV Thermal energy mostly in �

pp chain: CNO cycle:

N13

C12 C13

N15 N14

O15

O16 O17

F17

<E >=0.707MeV

<E >=0.999MeV

<E >=0.997MeV

He4

p p

p p

p p

e+

e+

e+

He4



Concha Gonzalez-Garcia
� First proposal by Bethe (1939) was that CNO dominated

“ It is shown that the most important source of energy in ordinary stars is the reactions of carbon

and nitrogen with protons.”

� Improved Solar Model& nuclear reaction data � Sun shines primarily by p-p

� SSM Fluxes , � � �, �

� 
� � �

, � � �, �

� � �� � �

� Can this be tested experimentally?

Difficult

– Radiochemical experiments sensitive to CNO fluxes
But do not measure only integrated flux above

– Oscillations modify the dependence of detected fluxes
Possible suppression of CNO fluxes TILL RECENTLY, ANSWER: No limit
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How the Sun Shines? Present Answer
Bahcall, MCG-G, Peña-Garay, astro-ph/0212331

� Fit solar (and KamLAND) data for:

– 2 � oscillations , � � , � � � � � + 8 free solar � fluxes under Luminosity constraint

� �
� �  �� � � � ! � �

�
� � �

� � � � � ��� � � �	 
� 	 �� � 
 � �
 � � 	 � 
 � �� � ��

� Study the quality of fit as a function of: , � � � �
�� � � � ���

� �� �

∆χ
2

LCNO /L°•

⇑ ⇑

Resulting Limit:

Testing the Solar Luminosity with Neutrinos
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Learning About ATM Fluxes

In ATM analysis one uses that the expected number of ATM � events

� ��� � ��
�

�
	 � �

�� � � � �
 � ��� � ��� � ��
�� � ��� ���� �� � �� � � � � �� � �� � � ��� � � �� � �! " 
 � � � �  " 
 � � � �

# �%$ & �'( )*+ " ,- '. � �$ /0 )" 1 '  ( *" + 0 " *+ ( 2 * 
( )* 3 '( *" +

4546 7 89 $ & �'( )*+ " :+ ( � ) ;  ( *" + < )" 
 
 = �  ( *" + � �� � �� � � � �$ 2 �( �  ( *" + >?  * �+  @

� � � �� � � " 
 � � �$ A 
  * - - ;( *" + 0 )" 3 ; 3 * - *( @

The ATM fluxes are inputs given by several groups. Schematically:
Bartol Group: Barr, Gaisser, Lipari, Robbins Stanev
Honda Group: Honda, Kajita, Kasahara, Midorikawa

north pole

the Earth

B
→

SK

ν

forbidden track (low energy)

allowed track (high energy)
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Learning About ATM Fluxes
� ��� � ��

�

�
	 # �

�� � �  " 
 � �� � ��� � ��
�� � ��� ��� �� � �� � � � � �� � �� � � ��� � � �� � �! " 
 � � � �  " 
 � � � �

� Question? Can we Extract ( � Deconvolute) � � from ATM � data?

� Answer : You need:
– Independent knowledge of oscillation parameters (OK)
– General enough analytical parametrization of fluxes (MISSING)

Or Neural Network parametrization of fluxes (J. Rojo, M. Maltoni, MCG-G, in preparation)

Our First Attempt: Extract only dependence using SK data

Procedure:
(1) Generate Replicas of Data according to all uncertainties:

Statistical, Systematic, Theo from Cross Section . . .
(2) Train Network to each Replica to get best fit flux

Chose some statistical criterion to define “best fit” avoiding overlearning
(3) Define average and range of fluxes:
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Procedure:
(1) Generate � � Replicas of Data according to all uncertainties:

Statistical, Systematic, Theo from Cross Section . . .
(2) Train Network to each Replica � to get best fit flux ����� �� ���� �
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 �� Chose some statistical criterion to define “best fit” avoiding overlearning
(3) Define average and range of fluxes:

� #�� � �! "� # $ � % �� � �! " 
 � �� &' ( ) *
' ( ) *

+, &
#�� � �! "� + "� � 	 - � &' ( ) *

' ( ) *
+, &

#.� � �! "� + "	 / � #.� � �! " #
	

$ � %



Concha Gonzalez-Garcia

Extracted ATM Fluxes from SK Data
(J. Rojo, M. Maltoni, MCG-G, preliminary)
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Some New Physics in ATM � -Oscillations
� Oscillations are due to:

– Missalignment between CC-int and propagation states: Mixing � Amplitude

– Difference phases of propagation states � Wavelength. For � ��� -OSC � � � � �
� ��

masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01

Non universal coupling of neutrinos to graviational potential

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97

Non universal asymptotic velocity of neutrinos

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos to torsion strength

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99

due to CPT violating terms:

Non-standard interactions in matter: Wolfenstein 78
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ATM � ’s: Subdominant NP Effects
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� Questions:

– Do these effects affect our determination of oscillation parameters?

– Can we limit these effects?
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ATM � ’s: Subdominant NP Effects
MCG-G, M. Maltoni hep-ph/0404085
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Future Bounds on New Physics: � Telescopes

At � Telescopes (Amanda, Antares, IceCube)

� � ��� �� ! � � � � GeV

Large # ATM ��� �
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The Dark Energy Problem – � Connection

Including latest WMAP results
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� � � �� � �� �� � �

�� � �� � �� �� ��� � � �	

� 
 � �� � � �� � � � � �

� � � �� � �� �� � � � �	�� � � � �� �

� Big Question: What is 
 ?
We do not know

� Next Question: Why now � � � �� ?
We do not know

� Next Question: Why now � � � � � ?

(within factor � � � )

May be � � and � � are related
and“track” each other

(Fardon, Nelson and Weiner, astro-ph/0309800)



Concha Gonzalez-GarciaMass Varying Neutrinos: Framework
� Ingredients: neutrinos � and a scalar field the acceleron �
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� In presence of a � background:

� �  � � � � � � �  � � � � � � � �

� � �� � � � � � � � � � � � � � � � � �

� �� � � � � � 
�� " � �
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 � � � � 	 � � �

� � � � � � � � 	 �
� � � �	 �� � �� � " � � � �

In cosmic background ( cm )

Both and

fixed by the minimum condition
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Concha Gonzalez-GarciaMass Varying Neutrinos in the Sun
M. Cirelli, M.C.G-G, C. Peña-Garay hep-ph/0503028

In the cosmic � background ( �� �� � � � � cm � 	 ) � � � � � � with � � � � � � � � � � � � �� � �

In the Sun

� � � � � � � � � �� �� � � � � � �� � � � �

� � � � �� ��� �� � � � � � �� � � � � � ��
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Effective mass difference depends on neutrino mass scale � � ��
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Effective mass difference

Survival Probability

Fit worsens for degenerate � ’s

� � �� � �� � �

(3 � )
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Mass Varying Neutrinos in the Sun (II)
Kaplan, Nelson and Weiner hep/ph0401099

If acceleron � also couples to matter fields"

� �
� �

� �� �

�� � �
�
� �

�

� �

�
" " � � � �� � � �

Neutrino mass also depends on the background matter densities

(Tests of gravitational inverse square law for eV)

This new matter density dependence affects solar neutrino evolution
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(Tests of gravitational inverse square law 	 #�� � # � � � �- �� for  ! " � �- � � eV)

This new matter density dependence affects solar neutrino evolution
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(1) For some values � � � � Slight better fit for LMA
Barger, Huber, Marfatia hep-ph/0502196
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LSND

� The only short distance signal for oscillation: 
� 	 � m with ��� � ��� 	 � MeV

� Observed � �� � � with probability ��	 � � �� � �
� �
 �
 �� 
 �
 �� � �

� � �� �� � searched for the same signal and did not observe oscillations
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LSND Try I: Sterile Neutrinos and 4 � Mixing
� Motivation: To explain LSND

� � �� �� � � � � ���	 � � � � 


� To fit solar, atmospheric and LSND � 3 � � � � 4th sterile �

� � : 6 mixing angles and 3 CP Dirac phases and 3 Majorana phases

� 6 mass spectra of two type:
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LSND Try I: Sterile Neutrinos and 4 � Mixing
� �

��� �� � � �� �� � � � � � � � � � � � � �

� � � � � � constrained by Bugey

� � � � � � constrained by CDHSW+ATM
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LSND Try I: Sterile Neutrinos and 4 � Mixing
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LSND Try II : CPT Violation

CPT violation:

� � ’s and �� ’s can have different masses

� Possibility of accommodating LSND?

Atmospheric

Atmospheric, LSND

Solar
KamLAND

Neutrinos Antineutrinos 

m       
1

m       
3

m       

m       

m       

3

2

1

m       
2

★

10
-4

10
-3

10
-2

10
-1

10
0

∆m
2
31 [eV

2
]

10
-4

10
-3

10
-2

10
-1

10
0

∆m
2 31

 [e
V

2 ]

★

0 0.2 0.4 0.6 0.8 1

sin
2 θ23

0

0.2

0.4

0.6

0.8

1

si
n2

θ 23

★★★
0 0.2 0.4 0.6 0.8 1

sin
2 θ13

0

0.2

0.4

0.6

0.8

1

si
n2

θ 13

But Data does not support this:

ATM and ’s similar wavelength

Solar and KamLAND similar

Best fit near

CPT conservationM
C

G
-G

,M
al

to
ni

,S
ch

ew
tz

,0
4

★

LS
N

D
★

10
-3

10
-2

10
-1

10
0

sin
2
 2θLSND

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

∆m
2 31

All-but-LSND

All-But-LSND and LSND regions

incompatible at



Concha Gonzalez-Garcia

LSND Try II : CPT Violation

CPT violation:
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LSND Try II : CPT Violation

CPT violation:
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LSND III: What it is Claimed to Work
� 3 active plus 2 light sterile neutrino mixing

Sorel, Conrad and Shaevitz, hep-ph/0305255

� 3 active plus 1 light sterile neutrino mixing plus CPT violation

Barger, Marfatia and Whisnant hep-ph/0308299

� 3 active plus 1 light sterile neutrino mixing plus MaVaN’s interactions

Barger, Marfatia and Whisnant hep-ph/0509163

� 3 active plus 1 light sterile neutrino mixing plus decay

Ma, Rajasekaran and Stancu hep-ph/9908489

Palomares-Ruiz,Pascoli and Schewtz, hep-ph/0505216

� 3 active plus 1 light sterile neutrino with extra dimensions

Pas, Pakvasa and Weiler, hep-ph/0504096

� 3 active plus quantum decoherence

Baremboim, Mavromatos, Sarkar and Waldron-Lauda, hep-ph/0603028
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Summary
� Big experimental effort has been devoted to proof � oscillations beyond doubt

� Solar and atmospheric signals are being confirmed with

“man-made” neutrino beams from reactor and accelerators.

� Solar, Reactor, Atmospheric and LBL data: Perfect in 3 � -oscillations

� After all existing experiments still many open questions:

What is the value of � � �

?

Is there CP violation in the leptons

The absolute scale of neutrino mass

Are neutrinos Dirac or Majorana particles?

� � oscillation data already provides interesting constraints on:

Solar Physics

Atmospheric Fluxes

Fundamental symmetries: LI, WEP, CPT

� models for Dark Energy . . .

� Accommodating LSND: A problem


