High energy cosmic rays and the potential for new physics discovery

Haim Goldberg
Northeastern University, Boston

> May 16, 2006 Pheno2006

- Lightening review of cosmic rays: spectrum, sources, losses
- Examples of New Physics discovery:
- Split supersymmetry
- High energy neutralinos in cosmic rays (decay of relics)
- Anomalous neutrino interactions at high energies (general treatment, TeV black holes, sphalerons)
- Quantum decoherence

May 16, 2006

- protons - pion photoproduction on CMB; GZK horizon at 50-100 Mpc
- nuclei - photodisintegration on CMB; ~ same horizon
- photons - pair production off CMB, IR, radio and B; window for distant UHE photons only if $B<10^{-12} \mathrm{G}$.

- AGN's (linear Fermi mechanism)
- Accretion shock waves
- Relativistic jets
- Magnetars
- Starburst galaxies (collective effects)
- GRB fireballs
- Top down mechanisms
- + many more

Anchordoqui, Nunez, HG, PRD71:065014,2005

- Split Supersymmetry: fine-tune to small Higgs mass, scalar masses are large, gluino mass $\mathrm{O}(\mathrm{TeV})$, long-lived

$$
\tau_{0} \simeq 25 \mathrm{yr}\left(\frac{\mathrm{TeV}}{M_{\tilde{g}}}\right)^{5}\left(\frac{M_{\mathrm{SUSY}}}{10^{11} \mathrm{GeV}}\right)^{4}
$$

Arkani-Hamed,Dimopoulos, JHEP 0506:073,2005

- isotope relic abundance $\rightarrow M_{\text {SUSY }} \lesssim 10^{13} \mathrm{GeV}$
- bound from BBN: decaying \tilde{g} 's \longrightarrow baryons which break apart ${ }^{4} \mathrm{He} \rightarrow$ excess D and Li Arvanitaki et al, hep-ph/0504210 $\rightarrow M_{\text {SUSY }}<10^{12} \mathrm{GeV}$
- G's from astrophysical source, air shower in atmosphere. ср Hewett et al hep-ph/0408248: G's created in atmosphere, flux limited for $M_{G}>200 \mathrm{GeV}$
- inelasticity $\sim\left(1 \mathrm{GeV} / M_{G}\right)$, minishowers, no distinct $X_{\text {max }}$ J. Gonzalez et al, hep-ph/0504210, 0504260

Lateral Shower Profile

Lateral distribution function, shower plane

- For one event/yr at PAO, require

$$
\int_{E_{G, \min }}^{E_{G, \max }} J_{G}\left(E_{G}\right) d E_{G} \approx 1.4 \times 10^{-21} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}
$$

- Production at source associated with neutrino production via pion decay

$$
\int J_{\nu}\left(E_{\nu}\right) d E_{\nu}=\frac{2}{3} \frac{\sigma_{\mathrm{inel}}}{\sigma_{p p \rightarrow G}\left(\hat{s}_{\min }\right)} \frac{\left\langle N_{\nu}\right\rangle}{N_{G}} \int J_{G}\left(E_{G}\right) d E_{G}
$$

- Expected neutrino flux

$$
J_{\nu}\left(1.5 \times 10^{12} \mathrm{GeV}\right) \approx 4.4 \times 10^{-30} \mathrm{GeV}^{-1} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}
$$

- Within a factor of 2 of limits set by RICE, and extrapolated cascade bounds (related to diffuse photon background set by EGRET
- If a few events observed in 10 yrs, and expect $\sim 1 \mathrm{yr}^{-1}$ on basis of high energy neutrinos observed, can set a lower limit on the lifetime of M_{G}

$$
\frac{E_{G}}{M_{G}} \tau_{0}>H^{-1} \rightarrow \tau_{0} \gtrsim 100 \mathrm{yr}
$$

$$
\rightarrow M_{\text {SUSY }}>6 \times 10^{10} \mathrm{GeV}
$$

Barbot, Drees, Halzen, Hooper, PLB563:132,2003; Anchordoqui, HG, Nath,
PRD70:025014,2004

- Detect air showers produced by high energy neutralinos emitted in long-lived relic X particle decay
- Underlying process is $\tilde{\chi}+q(\bar{q}) \longrightarrow \tilde{q}(\overline{\tilde{q}}) \longrightarrow$ all
- Weak interaction strength \rightarrow restrict events to large zenith angle to eliminate hadronic bkgd
- Elimination of neutrino bkgd to be described
- Require large acceptance $\sim 2400 \mathrm{~km}^{3}$ we akin to EUSO space-based fluorescence detector
- EUSO at present is planned to dock on JAXA platform on the ISS
- Riken laboratory has agree to pay for increasing eff of photomultipliers
- Most significantly, JAXA has proposed to use their HTV launcher in place of NASA shuttle
- Mature project with high promises

```
EUSO collaboration, Nucl. Phys. Proc. Suppl. 151, 401 (2006)
```

- Normalization: X particle density + homogenous population of astrophysical sources fits UHE proton flux
- EGRET bounds: photons resulting from X decay conform with EGRET limits on GeV gamma ray flux
- Dark matter: X density consistent with negligible contribution to WMAP dark matter fraction
- For a small range of squark masses, neutralino cross sections are
* sufficiently smaller than neutrino cross sections so that restricting upcoming showers to pass through enough earth would screen out neutrinos
* sufficiently large to give enough events in the atmosphere
- For bino-type neutralinos, $m_{\tilde{q}} \simeq 1 \mathrm{TeV}$ does the job

Event rate at EUSO

$$
\mathcal{N}=\int_{E_{\tilde{\chi}}^{\min }}^{E_{\tilde{\chi}}^{\max }} d E_{\tilde{\chi}} N_{A} P \frac{d \Phi}{d E_{\tilde{\chi}}} \sigma_{\tilde{\chi} N} A \epsilon_{\mathrm{DC}} t
$$

- Estimate neutrino bkgd is about 0.3 events in 3 years
- Require 3.09 neutralino events for significance at 95\% CL
- For parameters given, find ~ 4 or 5 events
- Results in figure to follow

Anchordoqui, Feng, HG, PRL 96:021101,2006
UHE hadronic cosmic rays ($E>10^{10} \mathrm{GeV}$) expected to be accompanied by UHE neutrinos:

$$
\boldsymbol{p}+\gamma \rightarrow \boldsymbol{n}+\pi^{+}, \quad \boldsymbol{\pi}^{+} \rightarrow e^{+} \nu_{e} \nu_{\mu} \overline{\boldsymbol{\nu}}_{\mu}
$$

Or

$$
p+p \rightarrow \text { nucleons }+\pi^{\prime} \mathrm{s}, \quad \pi^{ \pm} \rightarrow e^{ \pm}+\nu \text { 's }
$$

- For optically thin source (neutrons escape), can relate Φ^{ν} to cosmic ray flux Waxman, Bahcall PRD 59023002 (1999)
- Find (for $p p$)

$$
E^{2} \Phi_{\mathrm{WB}}^{\nu} \simeq 2 \times 10^{-8} \mathrm{GeV} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}
$$

for each flavor.

- Specialize to $10^{7} \mathrm{GeV}<E_{\nu}<10^{7.5} \mathrm{GeV}$ - minimize atmospheric background, have sufficient flux

Neutrino astronomy 1911: early assessment of South Pole site

December 14th
\Downarrow
Expedition led by Roald Amundsen stood at the South Pole a month before Robert Scott

Halzen, astro-ph/0311004

- Effective Area $\approx 1 \mathbf{k m}^{2}$
- $E_{\text {th }} \approx 100 \mathrm{GeV}$
- 4800 PMT's on 80 strings
- μ-track angular resolution $\Rightarrow 1^{\circ} \times 1^{\circ}$ bin
- Calibration \Leftrightarrow IceTop $1 \mathrm{~km}^{2}$ air-shower detector with 160 stations

Tracks: Cosmic muons and CC interactions of ν_{μ} 's Angular resolution $1^{\circ} \times 1^{\circ}$

Showers: ν_{e} or ν_{τ} CC interactions
All NC interactions
Muon bremsstrahlung near detector
Angular resolution $10^{\circ} \times 10^{\circ}$

Salient observation: event rates for these have different dependence on cross section
A. Kusenko, T. Weiler, PRL 88,161101 (2002)

- Down-going shower event rate can be enhanced because of a large flux or anomalously large $\sigma_{\nu N}$ or some combination of both
- Up-going rate also increases with increasing ϕ^{ν}; however, because of absorption on passage through earth, event rate decreases with increasing $\sigma_{\nu N}$
- Absorption effects will limit up-going events to those coming at just below the horizon -Earth-skimming events J. L.Feng et al, PRL 88,161102(2002)

$$
\mathcal{N}_{\text {down }}=C_{\text {down }} \frac{\phi^{\nu}}{\phi_{\mathrm{WB}}^{\nu}} \frac{\sigma_{\nu N}}{\sigma_{\mathrm{SM}}}
$$

- Constant $C_{\text {down }}$ depends on exposure, acceptance, and varies according to neutrino flavor from experiment to experiment
- ϕ_{WB}^{ν} and σ_{SM} serve only as normalization factors
- Specialize to electron showers, find

$$
C_{\text {down }}=4 \text { events }
$$

in 15 yrs

In this case

$$
\mathcal{N}_{\mathrm{up}}=C_{\mathrm{up}} \frac{\phi^{\nu}}{\phi_{\mathrm{WB}}^{\nu}} \frac{\sigma_{\mathrm{SM}}^{2}}{\sigma_{\nu N}^{2}} \quad\left(\frac{\sigma_{\nu N}}{\sigma_{\mathrm{SM}}}>1\right)
$$

- This holds for $L^{\ell} \ll L^{\nu}<\boldsymbol{R}_{\oplus}$, corresponding to $E>10^{7} \mathrm{GeV}$
- $\sigma_{\nu N}$ is defined with cuts so that shower energy fraction of same order as that of the CC SM process.
- Specialize to tau showers (distinctive topologies), find for 15 yr

$$
C_{\mathrm{up}}=20 \text { events }
$$

J.J Tseng et al ; J.Jones et al; S.I.Dutta et al

With estimates of $C_{\text {down }}$ and C_{up}, can determine sensitivities of IceCube to ϕ^{ν} and $\sigma_{\nu N}$

- For a given set of observed rates $\mathcal{N}_{\text {up }}^{\text {obs }}$ and $\mathcal{N}_{\text {down }}^{\text {obs }}$, two curves obtained in 2-D parameter space by setting $\mathcal{N}_{\text {up }}^{\text {obs }}=\mathcal{N}_{\text {up }}$ and $\mathcal{N}_{\text {down }}^{\text {obs }}=\mathcal{N}_{\text {down }}$
- Curves intersect at a point, yielding the most probable values of ϕ^{ν} and $\sigma_{\nu N}$ for the given observations
- Fluctuations about this point define contours of constant χ^{2} in an approximation to a multi-Poisson likelihood analysis
$\chi^{2}=\sum_{i}^{\text {down, up }} 2\left[\mathcal{N}^{i}-\mathcal{N}_{\mathrm{obs}}^{i}+\mathcal{N}_{\mathrm{obs}}^{i} \ln \left(\frac{\mathcal{N}_{\mathrm{obs}}^{i}}{\mathcal{N}^{i}}\right)\right]$
S. Baker and R. D. Cousins, Nucl. Instrum. Meth. A221,437(1984)
- Two illustrative cases:

$$
\left(\mathcal{N}_{\text {down }}^{\text {obs }}, \mathcal{N}_{\text {up }}^{\text {obs }}\right)=(4,20),
$$

conforming to SM/WB expectations

$$
\left(\mathcal{N}_{\text {down }}^{\text {obs }}, \mathcal{N}_{\text {up }}^{\text {obs }}\right)=(35,20),
$$

indicating deviation from σ_{SM} and/or ϕ_{WB}^{ν}

$\mathbf{9 0 \%}, \mathbf{9 9 \%}$ and 99.9% CL contours for two cases in previous slide. Lower are deviation bounds, upper signal 5σ new physics discovery (for any flux).

- multi-KK graviton exchange in non-warped TeV scale gravity models Emparan, Masip, Rattazzi
- BH production in these models Feng and Shapere;

Anchordoqui et al; Ahn, Cavaglia, Olinto

- cross section enhancements due to electroweak instantons Ahlers, Ringwald, Tu

All of these are shower producing

Example of sensitivity; Large extra dimensional BH

If $\mathcal{N}_{\text {up }}^{\text {obs }}=C_{\text {up }}$ and $\mathcal{N}_{\text {down }}^{\text {obs }}=C_{\text {down }}$, can bound BH cross section and thus scale of TeV gravity M_{D}

Density matrix description

$$
\begin{aligned}
\rho^{\alpha}(t) & =\left|\nu_{\alpha}(t)\right\rangle\left\langle\nu_{\alpha}(t)\right| \\
\boldsymbol{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}} & =\operatorname{Tr}\left[\rho_{\alpha}(t) \rho_{\beta}\right]
\end{aligned}
$$

Evolve $\rho^{\alpha}(t)$ using modified Liouville equation

$$
\frac{\partial \rho}{\partial t}=-i[H, \rho]+\mathcal{D}[\rho]
$$

$$
\mathcal{D}[\rho]=-\frac{1}{2} \sum_{j}\left(\left[b_{j}, \rho b_{j}^{\dagger}\right]+\left[b_{j} \rho, b_{j}^{\dagger}\right]\right)
$$

- This conserves total probability $\operatorname{Tr}(\rho)$
- Can be obtained as interaction with heat bath via $a^{\dagger} b+b^{\dagger} a$
- Monotonic increase of von Neumann entropy $S=-\operatorname{Tr}(\rho \ln \rho) \rightarrow b$ hermitian
- Expand in Gell-Mann matrices, $\gamma_{i}=$ eigenvalues of $\boldsymbol{b}^{\dagger} \boldsymbol{b}$
- Dealing with distant sources \rightarrow only γ_{3}, γ_{8} survive oscillation, take $\gamma_{3}=\gamma_{8}$

$$
\begin{aligned}
P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}} & =\frac{1}{3}+\mathrm{e}^{-\bar{\gamma} d}\left[\frac{1}{2}\left(U_{\alpha 1}^{2}-U_{\alpha 2}^{2}\right)\left(U_{\beta 1}^{2}-U_{\beta 2}^{2}\right)\right. \\
& \left.+\frac{1}{6}\left(U_{\alpha 1}^{2}+U_{\alpha 2}^{2}-2 U_{\alpha 3}^{2}\right)\left(U_{\beta 1}+U_{\beta 2}^{2}-2 U_{\beta 3}^{2}\right)\right]
\end{aligned}
$$

Expect γ to be energy dependent

$$
\begin{aligned}
\bar{\gamma} & =\kappa_{n}\left(E_{\nu} / \mathrm{GeV}\right)^{n}, \quad n=-1,0,1,2 \ldots \\
& =\left(E_{\nu} / M_{\mathrm{QG}}\right)^{n-1} E_{\nu}
\end{aligned}
$$

- $n=-1$ is analogue of oscillation, $n=0$ like decay
- $n \geq 2$ involves large scale M_{QG}
- use atmospheric neutrinos ν_{μ} at SK and K2K
- can probe decoherence length γ^{-1} of order the oscillation length $\sim 10^{\mathbf{3}} \mathrm{km}$ to obtain limits see later
- can obtain much stronger limits if there is source of neutrinos at large distance ($\gtrsim \mathrm{kpc}$) with observed flavor mix $\neq 1: 1: 1$
- In what follows, IceCube is used as neutrino detection facility
- In PRD72:065019,2005 Anchordoqui, Gonzalez-Garcia, HG, Halzen, Hooper, Sarkar, Weiler use reported (at the time) anisotropy from direction of Cygnus OB2 region $(d \approx 1.7 \mathrm{kpc})$
- Anisotropy identified as neutrons from photodisintegration of Fe
- $\bar{\nu}_{e}$'s from neutron decay evolve to $\bar{\nu}_{e}: \bar{\nu}_{\mu}: \bar{\nu}_{\tau}=2.5: 1: 1$ after large distance definitely not 1:1:1
- $\bar{\nu}$ fluxes fixed by n flux fixed by anisotropy

- Obtain number of tracks and showers expected from atmospheric background
- Introduce an additional background of tracks and showers due to possible 1:1:1 source of neutrinos from nearby HEGRA γ ray source
- Calculate theoretically expected number of tracks and showers as a function of the decoherence parameter $\bar{\kappa}_{n}$ and the HEGRA background
- Marginalize on HEGRA background to obtain bounds on $\bar{\kappa}_{n}$ for a given observed number of tracks and showers

$$
\text { Results for } \mathcal{N}_{\text {obs }}=\mathcal{N}_{\mathrm{ATM}}
$$

Table 1: 90\% CL limits on decoherence

	Cygnus OB2		SK \& K2K	
n	$\kappa_{\max }(\mathrm{GeV})$	$M_{\mathrm{QG}}^{\min }(\mathrm{GeV})$	$\kappa_{\max }(\mathrm{GeV})$	$M_{\mathrm{QG}}^{\min }(\mathrm{GeV})$
-1	1.0×10^{-34}	-	2.0×10^{-21}	-
0	3.2×10^{-36}	-	3.5×10^{-23}	-
2	2.0×10^{-44}	5.0×10^{43}	9.0×10^{-28}	1.1×10^{27}
3	3.0×10^{-47}	1.8×10^{23}	-	$3.3 \times 10^{13^{*}}$

* Obtained from limit on γ, with $\left\langle E_{\nu}\right\rangle \approx 100 \mathrm{GeV}$

University, Boston

For a wide variety of fundamental questions in particle physics

- Split Supersymmetry
- long-lived superheavy relics
- anomalous neutrino interactions at very high energies
- quantum decoherence
the new generation of detectors (Auger, IceCube, EUSO) can provide important constraints on the new physics, if not discovery.

