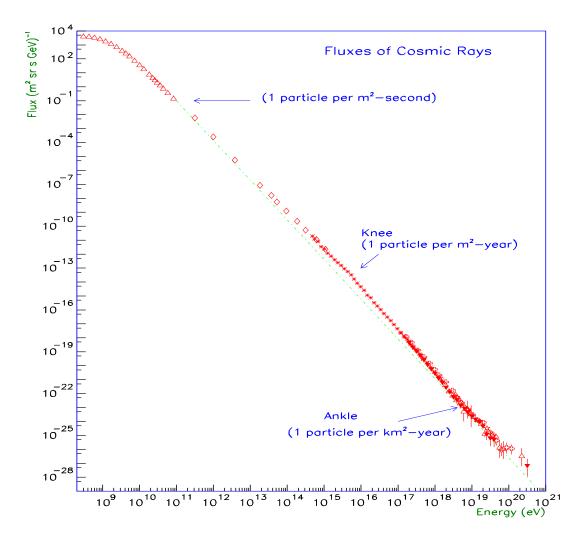
High energy cosmic rays and the potential for new physics discovery

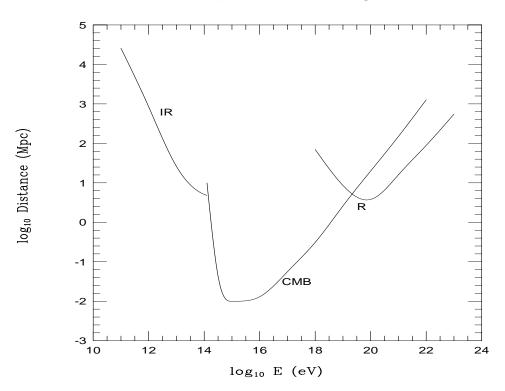
Haim Goldberg Northeastern University, Boston


May 16, 2006 Pheno2006

- Lightening review of cosmic rays: spectrum, sources, losses
- Examples of New Physics discovery:
 - Split supersymmetry
 - High energy neutralinos in cosmic rays (decay of relics)
 - Anomalous neutrino interactions at high energies (general treatment, TeV black holes, sphalerons)
 - Quantum decoherence

Haim Goldberg

Northeastern University, Boston


The cosmic ray spectrum

High energy cosmic rays and the potential for new physics discovery

Cosmic ray horizons

- protons pion photoproduction on CMB; GZK horizon at 50–100 Mpc
- nuclei photodisintegration on CMB; \sim same horizon
- photons pair production off CMB, IR, radio and B; window for distant UHE photons only if $B < 10^{-12}$ G.

High energy cosmic rays and the potential for new physics discovery

May 16, 2006 Pheno2006

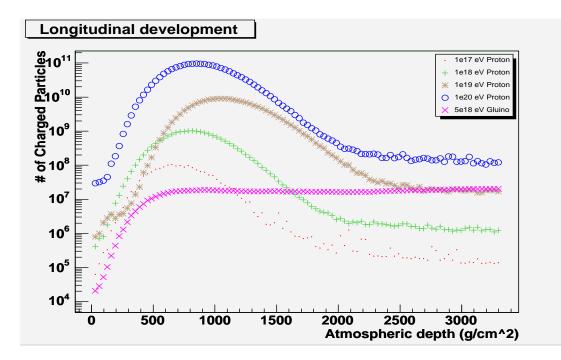
Sources

- AGN's (linear Fermi mechanism)
- Accretion shock waves
- Relativistic jets
- Magnetars
- Starburst galaxies (collective effects)
- GRB fireballs
- Top down mechanisms
- + many more

New physics: Split SUSY at Auger

Anchordoqui, Nunez, HG, PRD71:065014,2005

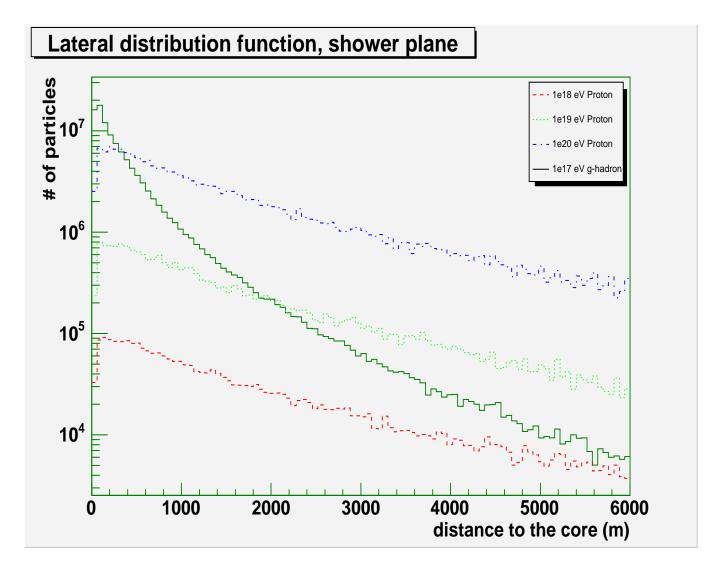
 Split Supersymmetry: fine-tune to small Higgs mass, scalar masses are large, gluino mass O(TeV), long-lived


$$au_0 \simeq 25 \,\, {
m yr} \,\, \left(rac{{
m TeV}}{M_{ ilde g}}
ight)^5 \left(rac{M_{
m SUSY}}{10^{11}\,\,{
m GeV}}
ight)^4$$

Arkani-Hamed, Dimopoulos, JHEP 0506:073, 2005

- isotope relic abundance $\rightarrow M_{
 m SUSY} \lesssim 10^{13} {
 m ~GeV}$
- bound from BBN: decaying \tilde{g} 's \rightarrow baryons which break apart ⁴He \rightarrow excess D and Li Arvanitaki et al, hep-ph/0504210 $\rightarrow M_{\rm SUSY} < 10^{12} {
 m GeV}$

Properties of G air showers


- *G*'s from astrophysical source, air shower in atmosphere. cp Hewett et al hep-ph/0408248: *G*'s created in atmosphere, flux limited for $M_G > 200$ GeV
- inelasticity $\sim (1~{
 m GeV}/M_G)$, minishowers, no distinct $X_{
 m max}$ J. Gonzalez et al, hep-ph/0504210, 0504260

High energy cosmic rays and the potential for new physics discovery

Lateral Shower Profile

High energy cosmic rays and the potential for new physics discovery

• For one event/yr at PAO, require

$$\int_{E_{G,\,{
m min}}}^{E_{G,\,{
m max}}} J_G(E_G) \, dE_G \, pprox 1.4 imes 10^{-21} \, {
m cm}^{-2} \, {
m s}^{-1} \, {
m sr}^{-1}$$

• Production at source associated with neutrino production via pion decay

$$\int J_
u(E_
u) \ dE_
u = rac{2}{3} \, rac{\sigma_{
m inel}}{\sigma_{pp
ightarrow G}(\hat{s}_{
m min})} \, rac{\langle N_
u
angle}{N_G} \, \int J_G(E_G) \ dE_G$$

• Expected neutrino flux $J_{\nu}(1.5 \times 10^{12} \text{ GeV}) \approx 4.4 \times 10^{-30} \text{ GeV}^{-1} \text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

Comparison with limits and a lower bound on $M_{\rm SUSY}$

- Within a factor of 2 of limits set by RICE, and extrapolated cascade bounds (related to diffuse photon background set by EGRET
- If a few events observed in 10 yrs, and expect $\sim 1~{
 m yr}^{-1}$ on basis of high energy neutrinos observed, can set a lower limit on the lifetime of M_G

$$rac{E_G}{M_G} au_0 > H^{-1} ~
ightarrow ~ au_0 \gtrsim 100 {
m yr}$$

$$ightarrow M_{
m SUSY} > 6 imes 10^{10} {
m ~GeV}$$

High energy cosmic rays and the potential for new physics discovery

Haim Goldberg Northeastern University, Boston

May 16, 2006 Pheno2006 **Detecting ultra-high energy neutralinos**

Barbot, Drees, Halzen, Hooper, PLB563:132,2003; Anchordoqui, HG, Nath, PRD70:025014,2004

- Detect air showers produced by high energy neutralinos emitted in long-lived relic *X* particle decay
- Underlying process is $ilde{\chi} + q(ar{q}) o ilde{q}(ar{ ilde{q}}) o ext{all}$
- Weak interaction strength → restrict events to large zenith angle to eliminate hadronic bkgd
- Elimination of neutrino bkgd to be described
- Require large acceptance $\sim 2400~{\rm km^3}$ we akin to EUSO space-based fluorescence detector

- EUSO at present is planned to dock on JAXA platform on the ISS
- Riken laboratory has agree to pay for increasing eff of photomultipliers
- Most significantly, JAXA has proposed to use their HTV launcher in place of NASA shuttle
- Mature project with high promises

EUSO collaboration, Nucl. Phys. Proc. Suppl. 151, 401 (2006)

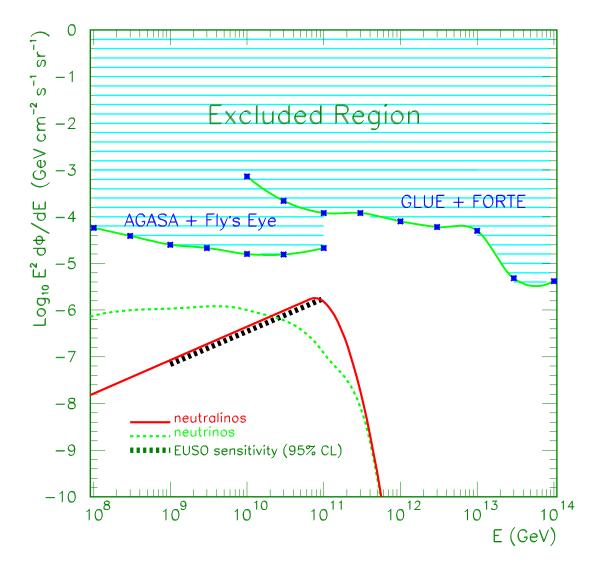
Constraints on neutralino flux

- Normalization: X particle density + homogenous population of astrophysical sources fits UHE proton flux
- EGRET bounds: photons resulting from *X* decay conform with EGRET limits on GeV gamma ray flux
- Dark matter: X density consistent with negligible contribution to WMAP dark matter fraction

Eliminating the neutrino background

- For a small range of squark masses, neutralino cross sections are
 - * sufficiently smaller than neutrino cross sections so that restricting upcoming showers to pass through enough earth would screen out neutrinos
 - * sufficiently large to give enough events in the atmosphere
- \bullet For bino-type neutralinos, $m_{\tilde{q}}\simeq 1~{\rm TeV}$ does the job

Event rate at EUSO


$$\mathcal{N} = \int_{E_{ ilde{\chi}}^{ ilde{\min}}}^{E_{ ilde{\chi}}^{ ext{max}}} dE_{ ilde{\chi}} \; N_A \; P \; rac{d\Phi}{dE_{ ilde{\chi}}} \, \sigma_{_{ ilde{\chi}N}} \, A \; \epsilon_{_{ ext{DC}}} \; t,$$

- Estimate neutrino bkgd is about 0.3 events in 3 years
- Require 3.09 neutralino events for significance at 95% CL
- For parameters given, find \sim 4 or 5 events
- Results in figure to follow

May 16, 2006

Pheno2006

EUSO sensitivity to neutralino flux

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

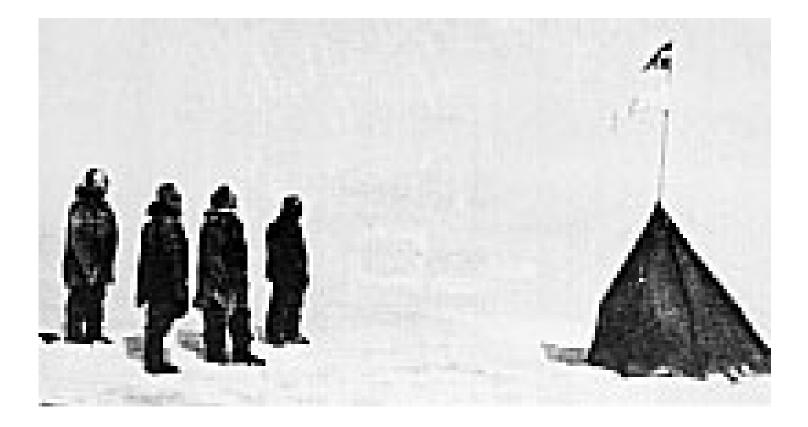
IceCube and anomalous neutrino interactions

Anchordoqui, Feng, HG, PRL 96:021101,2006

UHE hadronic cosmic rays $(E > 10^{10} \text{ GeV})$ expected to be accompanied by UHE neutrinos:

$$p+\gamma
ightarrow n+\pi^+, \ \ \pi^+
ightarrow e^+
u_e \
u_\mu \ ar
u_\mu$$

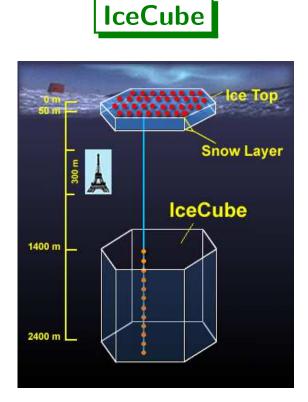
or


- $p+p
 ightarrow {
 m nucleons} + \pi$'s, $\pi^{\pm}
 ightarrow e^{\pm} +
 u$'s
- For optically thin source (neutrons escape), can relate Φ^{ν} to cosmic ray flux Waxman, Bahcall PRD 59 023002 (1999)
- Find (for *pp*)

$$E^2 \Phi^{\nu}_{\rm WB} \simeq 2 \times 10^{-8} \ {\rm GeV} \ {\rm cm}^{-2} \ {\rm s}^{-1} \ {\rm sr}^{-1}$$

for each flavor.

• Specialize to $10^7 \text{ GeV} < E_{\nu} < 10^{7.5} \text{ GeV}$ – minimize atmospheric background, have sufficient flux


Neutrino astronomy 1911: early assessment of South Pole site

December 14th

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

Halzen, astro-ph/0311004

- Effective Area $pprox 1 \ {
 m km}^2$
- $E_{\rm th} \approx 100 ~{\rm GeV}$
- 4800 PMT's on 80 strings
- μ -track angular resolution $\Rightarrow 1^{\circ} \times 1^{\circ}$ bin
- Calibration ⇔ IceTop
 - $rac{1}{\sim}$ 1 km² air-shower detector with 160 stations

High energy cosmic rays and the potential for new physics discovery

Haim Goldberg Northeastern University, Boston

May 16, 2006 Pheno2006

Tracks: Cosmic muons and CC interactions of ν_{μ} 's Angular resolution $1^{\circ} \times 1^{\circ}$

Showers: ν_e or ν_{τ} CC interactionsAll NC interactionsMuon bremsstrahlung near detectorAngular resolution $10^\circ \times 10^\circ$

Salient observation: event rates for these have different dependence on cross section

A. Kusenko, T. Weiler, PRL 88,161101 (2002)

- Down-going shower event rate can be enhanced because of a large flux or anomalously large $\sigma_{\nu N}$ or some combination of both
- Up-going rate also increases with increasing ϕ^{ν} ; however, because of absorption on passage through earth, event rate decreases with increasing $\sigma_{\nu N}$
- Absorption effects will limit up-going events to those coming at just below the horizon Earth-skimming events J. L.Feng et al, PRL 88,161102(2002)

Working equations: downgoing

$$\mathcal{N}_{
m down} = C_{
m down} \; rac{\phi^
u}{\phi^
u_{
m WB}} \; rac{\sigma_{
uN}}{\sigma_{
m SM}}$$

- Constant C_{down} depends on exposure, acceptance, and varies according to neutrino flavor from experiment to experiment
- $\phi^{
 u}_{
 m WB}$ and $\sigma_{
 m SM}$ serve only as normalization factors
- Specialize to electron showers, find

$$C_{
m down} = 4 \,\, {
m events}$$

in 15 yrs

Working equations: up-going

In this case

$$\mathcal{N}_{ ext{up}} = C_{ ext{up}} \; rac{\phi^
u}{\phi^
u_{ ext{WB}}} \; rac{\sigma^2_{ ext{SM}}}{\sigma^2_{
uN}} \quad \left(rac{\sigma_{
uN}}{\sigma_{ ext{SM}}} > 1
ight)$$

- This holds for $L^\ell \ll L^
 u < R_\oplus$, corresponding to $E > 10^7~{
 m GeV}$
- $\sigma_{\nu N}$ is defined with cuts so that shower energy fraction of same order as that of the CC SM process.
- Specialize to tau showers (distinctive topologies), find for 15 yr

$$C_{
m up}=20\,\,{
m events}$$

J.J Tseng et al; J.Jones et al; S.I.Dutta et al

High energy cosmic rays and the potential for new physics discovery

Haim Goldberg Northeastern University, Boston

May 16, 2006 Pheno2006 With estimates of $C_{\rm down}$ and $C_{\rm up}$, can determine sensitivities of IceCube to ϕ^{ν} and $\sigma_{\nu N}$

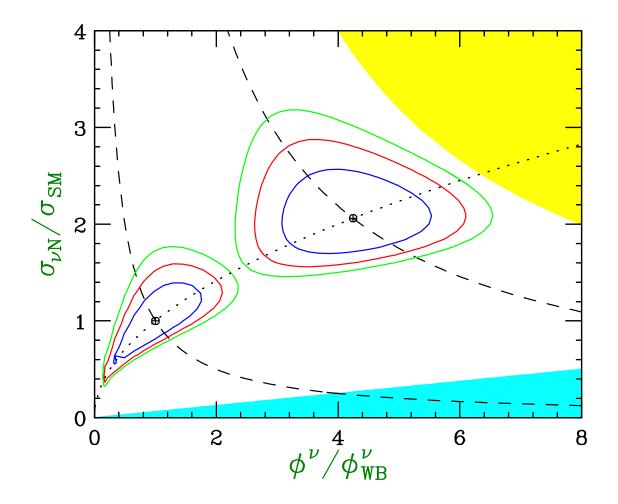
- For a given set of observed rates \mathcal{N}_{up}^{obs} and \mathcal{N}_{down}^{obs} , two curves obtained in 2-D parameter space by setting $\mathcal{N}_{up}^{obs} = \mathcal{N}_{up}$ and $\mathcal{N}_{down}^{obs} = \mathcal{N}_{down}$
- Curves intersect at a point, yielding the most probable values of ϕ^{ν} and $\sigma_{\nu N}$ for the given observations

Approximate likelihood analysis

• Fluctuations about this point define contours of constant χ^2 in an approximation to a multi-Poisson likelihood analysis

$$\chi^2 = \sum_i^{
m down,\,up} 2 \left[\mathcal{N}^i - \mathcal{N}^i_{
m obs} + \mathcal{N}^i_{
m obs} \, \ln\left(rac{\mathcal{N}^i_{
m obs}}{\mathcal{N}^i}
ight)
ight]$$

S. Baker and R. D. Cousins, Nucl. Instrum. Meth. A221,437(1984)


• Two illustrative cases:

 $(\mathcal{N}_{
m down}^{
m obs}, \ \mathcal{N}_{
m up}^{
m obs}) = (4, 20),$ conforming to SM/WB expectations $(\mathcal{N}_{
m down}^{
m obs}, \ \mathcal{N}_{
m up}^{
m obs}) = (35, 20),$ indicating deviation from $\sigma_{
m SM}$ and/or $\phi_{
m WB}^{\nu}$

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

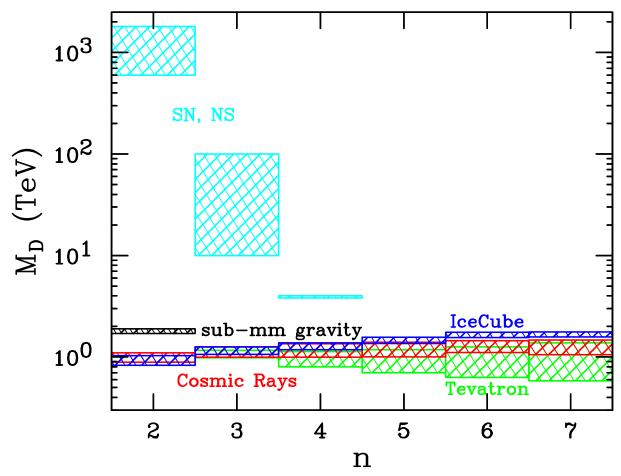
90%, 99% and 99.9% CL contours for two cases in previous slide. Lower are deviation bounds, upper signal 5σ new physics discovery (for any flux).

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

- multi-KK graviton exchange in non-warped TeV scale gravity models Emparan, Masip, Rattazzi
- BH production in these models Feng and Shapere;

Anchordoqui et al; Ahn, Cavaglia, Olinto

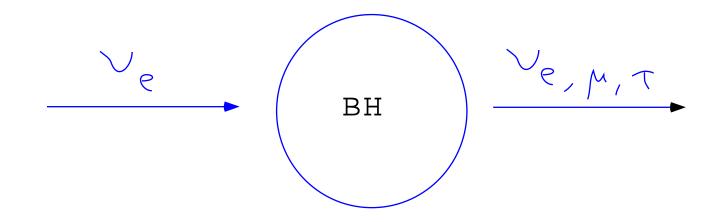

• cross section enhancements due to electroweak instantons Ahlers, Ringwald, Tu

All of these are shower producing

High energy cosmic rays and the potential for new physics discovery

Example of sensitivity; Large extra dimensional BH

If $\mathcal{N}_{up}^{obs} = C_{up}$ and $\mathcal{N}_{down}^{obs} = C_{down}$, can bound BH cross section and thus scale of TeV gravity M_D



High energy cosmic rays and the potential for new physics discovery

Quantum Decoherence via neutrinos

Density matrix description

$$egin{array}{rcl}
ho^lpha(t) &=& |
u_lpha(t)
angle \langle
u_lpha(t)| \ P_{
u_lpha
ightarrow
u_eta} &=& {
m Tr}\left[
ho_lpha(t)
ho_eta
ight] \end{array}$$

Evolve $\rho^{\alpha}(t)$ using modified Liouville equation

$$rac{\partial
ho}{\partial t} = -i[H, \,
ho] + \mathcal{D}[
ho]$$

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

Quantum Decoherence (cont'd)

$$\mathcal{D}[
ho] = -rac{1}{2}\sum\limits_{j} \left([b_j, \
ho \ b_j^\dagger] + [b_j \
ho, \ b_j^\dagger]
ight)$$

- This conserves total probability $Tr(\rho)$
- Can be obtained as interaction with heat bath via $a^{\dagger}b + b^{\dagger}a$
- Monotonic increase of von Neumann entropy $S = -\mathrm{Tr}(\rho \ln \rho) \to \mathbf{b} \text{ hermitian}$
- Expand in Gell-Mann matrices, $\gamma_i = ext{eigenvalues} ext{ of } b^\dagger b$
- Dealing with distant sources \rightarrow only γ_3, γ_8 survive oscillation, take $\gamma_3 = \gamma_8$

$$egin{array}{rll} P_{\overline{
u}_lpha
ightarrow \overline{
u}_eta} &=& rac{1}{3} + \mathrm{e}^{-\overline{\gamma}\,d} \; \left[rac{1}{2} \; (U_{lpha1}^2 - U_{lpha2}^2) (U_{eta1}^2 - U_{eta2}^2) \ &+& rac{1}{6} \; (U_{lpha1}^2 + U_{lpha2}^2 - 2 U_{lpha3}^2) (U_{eta1} + U_{eta2}^2 - 2 U_{eta3}^2)
ight] \end{array}$$

Expect γ to be energy dependent

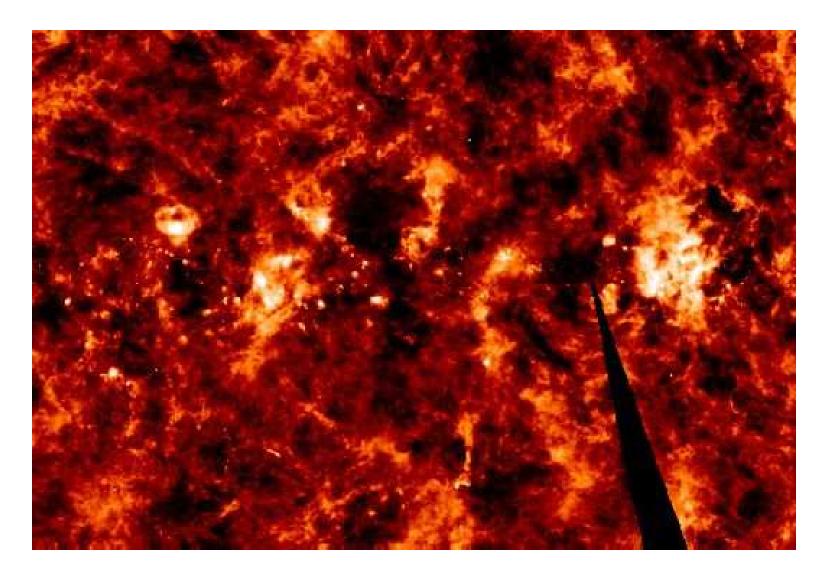
$$egin{array}{rcl} \overline{\gamma} &=& \kappa_n & (E_
u/{
m GeV})^n, & n=-1,0,1,2\dots \ &=& (E_
u/M_{
m QG})^{n-1} & E_
u \end{array}$$

- n = -1 is analogue of oscillation, n = 0 like decay
- $n \geq 2$ involves large scale $M_{
 m QG}$

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

Limits on γ


E. Lisi, A. Marrone, D. Montanino, hep-ph/0002053

- use atmospheric neutrinos ν_{μ} at SK and K2K
- can probe decoherence length γ^{-1} of order the oscillation length $\sim 10^3$ km to obtain limits see later
- can obtain much stronger limits if there is source of neutrinos at large distance ($\gtrsim kpc$) with observed flavor mix $\neq 1:1:1$
- In what follows, IceCube is used as neutrino detection facility

Example: Neutrinos from Neutrons from Cygnus OB2

- In PRD72:065019,2005 Anchordoqui, Gonzalez-Garcia, HG, Halzen, Hooper, Sarkar, Weiler use reported (at the time) anisotropy from direction of Cygnus OB2 region $(d \approx 1.7 \text{ kpc})$
- Anisotropy identified as neutrons from photodisintegration of Fe
- $\overline{\nu}_e$'s from neutron decay evolve to $\overline{\nu}_e: \overline{\nu}_\mu: \overline{\nu}_\tau = 2.5: 1: 1$ after large distance – definitely not 1:1:1
- $\overline{\nu}$ fluxes fixed by n flux fixed by anisotropy

Cygnus OB2

High energy cosmic rays and the potential for new physics discovery

Limits on γ

- Obtain number of tracks and showers expected from atmospheric background
- Introduce an additional background of tracks and showers due to possible 1:1:1 source of neutrinos from nearby HEGRA γ ray source
- Calculate theoretically expected number of tracks and showers as a function of the decoherence parameter $\overline{\kappa}_n$ and the HEGRA background
- Marginalize on HEGRA background to obtain bounds on $\overline{\kappa}_n$ for a given observed number of tracks and showers

Results for $\mathcal{N}_{\mathrm{obs}} = \mathcal{N}_{\mathrm{ATM}}$

Table 1: 90% CL limits on decoherence

	Cygnus OB2		SK & K2K	
n	$\kappa_{ m max}$ (GeV)	$M_{ m QG}^{ m min}$ (GeV)	$\kappa_{ m max}$ (GeV)	$M_{ m QG}^{ m min}$ (GeV)
-1	$1.0 imes10^{-34}$	_	$2.0 imes10^{-21}$	_
0	$3.2 imes10^{-36}$	—	$3.5 imes10^{-23}$	—
2	$2.0 imes10^{-44}$	$5.0 imes10^{43}$	$9.0 imes10^{-28}$	$1.1 imes 10^{27}$
3	$3.0 imes10^{-47}$	$1.8 imes10^{23}$	—	$3.3 imes 10^{13^{ *}}$

* Obtained from limit on γ , with $\langle E_{\nu} \rangle \approx 100 \text{ GeV}$

May 16, 2006 Pheno2006

High energy cosmic rays and the potential for new physics discovery

For a wide variety of fundamental questions in particle physics

- Split Supersymmetry
- long-lived superheavy relics
- anomalous neutrino interactions at very high energies
- quantum decoherence

the new generation of detectors (Auger, IceCube, EUSO) can provide important constraints on the new physics, if not discovery.