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Why Worry About EWSB?
Loss of Unitarity in
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Problems with a fundamental 

Higgs Boson



A Fork in the Road...
• (Make the Higgs Natural: Supersymmetry)

• Make the Higgs Composite

– Little Higgs

– Twin Higgs

• Eliminate the Higgs

– Technicolor

– “Higgsless” Models



Composite Higgs
Higgs as (Pseudo-)Goldstone Boson:

Hard to do!
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Georgi & Kaplan; Banks Chacko et. al., hep-ph/0510273

But, EWPT: f > 4 − 5 TeV

Must suppress η2 without suppressing η4



The Little Higgs

Collective Symmetry Breaking:
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Global Symmetry Extended
to Third Generation

• Top Yukawa Large and breaks chiral symmetries 

• Extra singlet quarks added

• Top mass results from seesaw like mixing 
between doublet and singlet fermions

• EWSB: radiatively induced



Little Higgs : The Hierarchy

Schmaltz hep-ph/0210415

Cancellation of 

divergences by 

particles of same spin!



Chen, Tobe, Yuan - see Tobe talk



Twin Higgs
• Global SU(4) Symmetry, H in fundamental

–  

– <H>, SU(4) breaks to SU(3); 7 GBs

• Weakly Gauge SU(2)W x SU(2)H, H=(HW,HH)

– 3 GBs eaten, 4 remaining are “higgs”

–  

• Z2 symmetry: gA=gB

– Accidental SU(4) symmetry of 

– No mass generated for higgs boson to O(g2)

Chacko, Go, and Harnick hep-ph/0506256
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Twin Higgs (cont’d)

• Self-coupling

• Extend SU(4) global symmetry to top-quark 
sector

• EWSB: Radiatively induced

• Hierarchy : like Little Higgs

∆V (4) ∝
g4

16π2
log

(

Λ

gf

)

(

|HW |4 + |HH |4
)

Goh, Argonne Workshop 2006



OR ...



Technicolor: Higgsless since 1976!

Eliminate the Higgs...



Technicolor 

Limits:
• Model Dependent

• Just Reaching

interesting range!

• Run II & LHC will

extend limits 

substantially

No Run II limits yet?

Narain, Womersley, RSC
PDG review



What about the S-parameter?
Why are we still talking about technicolor?

• Technicolor may be there 
– No “computations” of S in non-QCD like 

theories

• Technicolor has interesting experimental 
signatures
– Complementary to other BSM theories

• AdS/CFT Correspondence: 
– Some 4D strongly-coupled theories “dual” to 

weakly-coupled 5D theories

– New model building ideas

– Address S parameter issues



Extra-D Theories and Massive 
Vector Boson Scattering

Expand 5-D gauge bosons in eigenmodes:       

e.g. for S
1
/Z

2
:

Extra-D

KK mode

4-D gauge kinetic term contains
1

2

∞
∑

n=1

[

M
2

n(Aan

µ )2 − 2MnA
an

µ ∂
µ
A

an

5 + (∂µA
an

5 )2
]

i.e., A
an
L ↔ A

an
5



4-D KK Mode Scattering

Cancellation of bad high-
energy behavior through 

exchange of massive 
vector particles

RSC, H.J. He, D. Dicus

Can we apply this to 
W and Z?



No Free Lunch
Non-renormalizability of 5-D YM implies lingering 
unitarity issues ... how is this manifest in KK scattering?   

Consider a state composed of KK pairs with n ≤ N0
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L Ab!
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Find 4-D s-wave, gauge-singlet amplitude of     |ψaa〉 → |ψcc〉
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• unitary bound on        implies highest KK 
mode number is bounded from above:

  (consistent with 5-d intuition)

• g
SU(2)

~1 ; thus, one can potentially add a few 

vector mesons and delay unitarity onset

• Generalizes to a large class of 5-d manifolds 
and boundary conditions - Higgsless Models 
(Csaki, Grojean, Murayama, Pilo, Terning)

Moral: Unitarity can be delayed, 
but not avoided!
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• Choose “bulk” gauge group, location of fermions, 
and boundary conditions

• Choose g(x
5
)

• Choose metric/manifold: g
MN

(x
5
)

• Calculate spectrum & eigenfunctions

• Calculate fermion couplings

• Compare to Standard Model: S, T, U, ...

Recipe for a Higgsless Model:



• SU(2)N x U(1);     general fj
 
and gk

• Fermions sit on “branes”  [sites 0 and N+1]

• Many 4-D/5-D theories are limiting cases... 
study them all at once! 

• e.g., N=1 equivalent to technicolor/one-Higgs

Deconstructed Higgsless Models
g
0

g
1

f1 f2

g
N

g
N+1

fN fN+1

g
2

f3

Foadi, et. al.   &   Chivukula et. al.



Conflict of S & Unitarity
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Too large by a factor of a few!

Independent of warping or gauge couplings chosen...

Heavy resonances must unitarize WW scattering
(since there is no Higgs!)   

This bounds lightest KK mode mass:

... and yields



Since Higgsless models with localized 
fermions are not viable, look at:

Delocalized Fermions,  .i.e., mixing of “brane” 
and “bulk” modes

A New Hope?
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How will this affect precision EW observables?

x0 x1 x2 xN

Foadi & Schmidt: see Schmidt talkCacciapaglia et. al. 



Ideal Delocalization
• Choose delocalization related to W 

wavefunction:

• NB:

•  W-wavefunction orthogonal to KK 
wavefunctions.

• No (tree-level) couplings to heavy modes!

gixi ∝ v
W
i

xi = |ψf (i)|2 > 0

Ŝ = T̂ = W = 0

Y = M
2

W (ΣW − ΣZ)

RSC, HJH, MK, MT, EHS hep-ph/0504114Mass Eigenstate



LEP II Constraints

∆g
Z

1 ≤ 0.028 @ 95%CL

In a flat space SU(2) x SU(2) x U(1) model
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LEP II measurements of WWZ vertex yield



LHC Phenomenology

Birkedal, et.al., hep-ph/0412278



Observations
• Our standards have changed

• We are content with a low-energy effective 
theory valid to ~ few TeV

• This is a good thing in preparation for the 
LHC ...

• Fine-tuning is in the eye of the beholder

• S=O(1) in QCD-like technicolor; 
experimental bound O(0.1) - hence need 
10% fine-tuning?

• Dynamics matters: Inflation makes fine-tuning 
of flatness problem irrelevant.



Conclusions

• Two new mechanisms to address hierarchy problem

• Composite/Little/Twin Higgs

• Higgsless Models

• Both predict new TeV Scale particles

• Extended Electroweak Gauge Symmetries

• Extended Fermion Sector

• Much Phenomenology Left to be done!



LHC-TI Town Meeting

TODAY, 2:00pm -- 4:30pm CDT
Pyle Center, Room 227

702 Langdon Street 
University of Wisconsin

Madison, Wisconsin
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Electroweak Parameters I

S, T:   Peskin &  Takeuchi

EW corrections                     defined from 
amplitudes for “on-shell” 4-fermion processes

(S, T , ∆ρ, δ)
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Electroweak Parameters II

Barbieri, Pomarol, Rattazzi, Strumia
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Alternative formulation defined at zero momentum



Aside:  Moose notation

Reveals symmetry (breaking) structure at a glance
A familiar example:

Each circle represents a global SU(2) of  which all (solid, left) 
or a U(1) subgroup (dashed, right) is gauged

Low-energy Leff description of  symmetry-breaking sector 

employs non-linear sigma-model fields !
A solid line linking two circles is an [SU(2) x SU(2) / SU(2)] 

non-linear sigma model field; at the scale v this breaks the 
gauged or global symmetries of  the attached circles

Note: ! is a 2x2 matrix field transforming as                     

under the SU(2) groups which it connects.

SU(2)W x U(1)B       U(1)



An SU(2)xSU(2)xU(1)xU(1) model with the 
following symmetry-breaking pattern:

                     SU(2)L x SU(2)W x U(1)B x U(1)R

                                                    f
                                      SU(2)weak x U(1)Y

                                                    v
                                              U(1)EM

Can be represented compactly in Moose notation 



• MZ
2 as above;   Spectrum:  Photon, Z, heavy Z’s

• MW
2
 has g

N+1
= 0;   Spectrum:   W,  heavy W’s

• EM coupling as expected: 
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By considering the (0,N+1) co-factor, we deduce 
the form of the correlation function

Correlation Functions I
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We know the residue of Q
2
=0 pole must be e

2
 ...

Correlation Functions II
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Other residues are also informative.



Correlation function residue at Q
2 

= -M
2
Z

 

gives “J
3 

J
Y

” coupling of light Z-boson

S parameter: Brane Fermions
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