
Evolution of the CMS Submission Infrastructure
to Support Heterogeneous Resources

Marco Mascheroni, Antonio Perez-Calero Yzquierdo
On Behalf of the CMS Submission Infrastructure team

HTCondor Workshop Spring 2021

CMS Submission Infrastructure - GPU Exploitation by CMS

Outline

● The CMS experiment
● The CMS Submission Infrastructure
● CMS interest on GPUs
● Allocating and using GPUs
● Tests on GPUs already available for CMS
● Accounting for GPUs usage
● Conclusions

2

CMS Submission Infrastructure - GPU Exploitation by CMS

The CMS experiment at CERN

● High Energy Physics general-purpose
experiment running at the LHC at CERN:
proton-proton collisions

● Experimental data is stored, distributed,
reconstructed, and analyzed, comparing to
simulated data (Monte-Carlo)

3

CMS computing public results

● Projections made in 2020 predicted ~4x gap in CPU
needs to address resource evolution by the
High-Luminosity LHC era (starting in 2027)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

CMS Submission Infrastructure - GPU Exploitation by CMS

The computing landscape

● Data traditionally analyzed using WLCG Grid
resources

○ Global collaboration of around 170 computing centers
○ Access based on pledges
○ Homogeneous resources (VO Card)

● Began to exploit HPC as well
○ E.g.: Cori, Stampede, Bridges, Theta, Expanse Frontera,

Marconi, BSC, …
○ Access based on allocations
○ Heterogeneous resources (different architectures, network

segregation, GPUs, ...)

Within the CMS Experiment, the Submission Infrastructure (SI) group organizes
HTCondor operations, the technology used to access all of these resources.

4

CMS Submission Infrastructure - GPU Exploitation by CMS

The CMS Submission Infrastructure Group

5

● Part of CMS Offline and Computing in charge of:
○ Organizing HTCondor and GlideinWMS operations in CMS, in particular of the Global Pool, an

infrastructure where reconstruction, simulation, and analysis of physics data takes place
○ Communicate CMS priorities to the development teams of glideinWMS and HTCondor

● In practice:
○ We operate a (vanilla) HTCondor pool peaking at 250k/300k cores distributed over 70 Grid

sites, plus non-Grid resources (HLT farm, HPC sites, Cloud)
○ We regularly hold meetings with HTCondor and glideinWMS developers where we discuss

■ Current operational limitations
■ Feature requests
■ Future scale requirements

Cores running in the Global
Pool in the past 5 years

300k

150k

CMS Submission Infrastructure - GPU Exploitation by CMS

A Complex Infrastructure

6

● Resources mainly acquired with GlideinWMS pilots

● Vacuum-like instantiated: slots (DODAS), BOINC(CMS@Home), opportunistic (HLT)...

● The CMS SI model evolved to use
federated pools, with extensive use
of flocking

● Two sets of workflow managers:
CRAB + WMAgent

● The Global Pool is the biggest and
most important one:

○ ~300k CPU cores
○ 100k to 150k running jobs
○ 50+ schedds
○ 3 negotiators

● Redundant infrastructure for HA

CMS Submission Infrastructure - GPU Exploitation by CMS

Interest for GPUs

● Availability of graphics accelerators is increasing
○ Not only HPC, but also among traditional WLCG resources

● Be prepared to run substantial part of processing at HPCs
○ Shift driven by funding agencies
○ High fraction of the computing power in HPCs coming from GPUs

7

CMS Submission Infrastructure - GPU Exploitation by CMS

CMS Software capabilities

● CMSSW framework orchestrates the data processing
○ cmsRun is the payload process that ultimately runs on nodes at sites

● Allows to offload computation to GPU accelerators
○ In process: on accelerators present on the the same node cmsRun is being executed. This is the focus of this

talk
○ External: connecting to an external process possibly running on another node

● Heterogeneous trigger farm (HLT) featuring CPUs and GPUs for run 3
○ Up to 25% of the HLT reconstruction code can be offloaded to GPUs (source)
○ Offline data processing framework and algorithms are the same used online

● Framework able to dynamically use GPUs when they are available, or just use CPUs (and
take longer)

○ More on this in a moment!

● NVidia CUDA as language
○ Performance portability libraries are being investigated

8

https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf

CMS Submission Infrastructure - GPU Exploitation by CMS

Allocating and Scheduling workloads on GPUs

9

CMS Submission Infrastructure - GPU Exploitation by CMS

GPU node allocation: configuration

● Pilot jobs need to be configured
○ Typically we send 8-core partitionable pilots for CPU sites
○ Whole node pilots are also possible

● Need to include GPUs in the slots now

Diverse modes available:

WN: 32 CPU, 2 GPU WN: 32 CPU, 2 GPU

1 2
2GPU 2CPU

30 CPU
32CPU 2GPU

10

Keep GPUs in a
dedicated slot with
minimum CPU

Whole node
configuration type

● Currently using a mix depending on site admin preferences
○ Either whole node configuration, or slots with 8 CPUs + 1 GPU

● Flexibility vs efficiency
○ Whole nodes are more flexible but less fragmentation with the 8+1 slots

CMS Submission Infrastructure - GPU Exploitation by CMS

Matchmaking GPUs in CMS HTCondor Pool

11

These are the CMS specifications foreseen for GPU-workload matchmaking

● Main switch
○ request_gpus to signal the necessity to use a GPU
○ CMS SI was asked to accomodate for a use case where payloads use GPUs “if available”

● Mandatory matching attributes
○ GPUMemory (e.g.: 8000Mb, 16000Mb)
○ CUDACapability (e.g.: 6.0, 6.5)
○ CUDACompatibleRuntimes (e.g.: [11.1,11.2], [12.0,12.5]): list of runtimes provided by

running a CMS probing script in the pilot
● Monitor & Debug attributes

○ GPUName, CUDARuntimeVersion , CUDADriverVersion , ...

CMS Submission Infrastructure - GPU Exploitation by CMS

Tests on GPUs (I)

● Tested matchmaking: jobs to GPUs pointing to all resources (sites)
● Measure their performance by executing a simple script:

○ TensorFlow multiple (10k x 10k), float16, random matrix multiplication
● Record execution time as metric correlated to performance

○ A function of GPU model and average for each CMS site

GPUs in use during the tests

12

CMS Submission Infrastructure - GPU Exploitation by CMS

Tests on GPUs (II)

● Execution time of identical payload as a metric of performance, by GPU type

13

Distribution of test jobs by GPU type

Distribution of test job execution time results

CMS Submission Infrastructure - GPU Exploitation by CMS

Monitoring GPUs available to CMS

● Regularly scanning the Global Pool for GPU resources and their properties
○ Submit pilots that run the HTCondor GPU discovery tool

● Resources are opportunistic in nature for now
○ sites voluntarily adding GPUs to CMS pool

14

CMS Submission Infrastructure - GPU Exploitation by CMS

Efficiency in the exploitation of GPU nodes

CPU efficiency in the CMS HTCondor Global
Pool: typically high efficiency, we want to keep
it that way when moving to heterogeneous
resources!

15

Site policies matter: preference to use GPU slots
only when GPU workloads are available

Then, saturate the CPU part if possible

But vacate the slot as soon as the GPU part is
finished, to enable access for other jobs

● Considering preemption of the CPU part?
Would be the first time we use it in SI

Also, given late-binding, minimize pilots landing on a
GPU node when all the GPU jobs are gone

● Plan to keep removing pilots that are idle in
the site queues if necessary, like we do for
CPUs

● Common to regular CPU pilots, but more
critical for GPUs

CMS Submission Infrastructure - GPU Exploitation by CMS

Open questions

16

CMS Submission Infrastructure - GPU Exploitation by CMS

GPU benchmarking & accounting

● Why benchmarking?
○ Pledges definition and resource acquisition
○ A critical element in proper accounting of resource utilization

● The current standard HEP benchmark: HS06 (based on 2006 specification, no GPU)
○ HEPScore as a replacement that has been developed by the HEPiX Benchmarking Working Group (source)
○ Inclusion of GPUs is an ongoing development effort (using event processing throughput as performance metric)

● While the proper procedure for GPU usage accounting is defined, our simple proposal to start accounting
GPU usage would be to record all the data related to job execution time, along with GPU model, CUDA
libraries, etc.

○ Use “GPU time”, as provided by HTCondor, in addition to GPUsAverageUsage and GPUsMemoryUsage

● A GPU benchmark will be needed to reasonably predict scaled execution time of CMS workloads
○ A key parameter for an efficient matchmaking of jobs to slots

■ Up to now, reasonable assumption of approx. equal run times on all CPU resources
○ The use of GPU coprocessors introduce a high degree of heterogeneity in the resources we can access, and their relative

throughputs
■ Observed a 10x execution time difference on our very simple test jobs!

17

https://indico.cern.ch/event/948465/contributions/4323674/attachments/2246279/3810655/HEPiX_Benchmarking.pdf

CMS Submission Infrastructure - GPU Exploitation by CMS

Use GPU “if available”

Profit from framework flexibility to dynamically adapt workload to CPU or CPU+GPU environment

However, apparently a simple logic but not so easy to implement!

● Machine slots does not simply exist, they are created through pilot jobs based un user job requests
○ Do we trigger a GPU pilot if a user job has “requires_gpu” true, false, ifAvailable ?

● Matchmaking: how do you treat those user jobs in terms of shares and priorities compared to other GPU user jobs?
● Still something that needs to be clarified internally in CMS by defining clear policies

An example of flexible matchmaking conditions, CMS already has user jobs with variable number of CPUs (resizable jobs):

RequestCpus = WMCore_ResizeJob ? RequestResizedCpus : OriginalCpus
RequestResizedCpus = (Cpus > MaxCores) ? MaxCores : ((Cpus < MinCores) ? MinCores : Cpus)

Focusing on the simple use case for now (request_gpus is constant number).

18

CMS Submission Infrastructure - GPU Exploitation by CMS

Conclusions

19

CMS Submission Infrastructure - GPU Exploitation by CMS

Summary and Conclusions

Summary:

● The Submission Infrastructure is a stable and performant piece of CMS Computing, continuously being reviewed, upgraded
and expanded

● The landscape of resources for CMS is evolving towards higher heterogeneity
○ GPU resources already added to the Global Pool.
○ Opportunistic in nature so far, none of it is pledged to CMS up to now
○ Already available for CRAB and CMSConnect users

● Submission Infrastructure focused on enabling efficient use of GPU nodes according to CMS preferred policies, which
requires customized matchmaking expressions

● The Submission Infrastructure is ready to accept GPU workloads
○ Coordinate with Software and WM teams for realistic workload submission

To Do:

● Use GPUs “IfAvailable” remains a problem to be solved
● GPU benchmarking and usage accounting to be clarified

We thank the HTCondor development team for the continued support to CMS SI, a model of excellent
partnership!

20

CMS Submission Infrastructure - GPU Exploitation by CMS

Extra Slides

21

CMS Submission Infrastructure - GPU Exploitation by CMS

Abstract

The landscape of computing power available for the CMS experiment is already evolving from almost exclusively x86
processors, predominantly deployed at WLCG sites, towards a more diverse mixture of Grid, HPC and Cloud facilities,
incorporating a higher fraction of non-CPU components, such as GPUs. The CMS Global Pool is consequently adapting to
the heterogeneous resource scenario, aiming at making the new resource types available to CMS. An optimal level of
granularity in their description and matchmaking strategy will be essential in order to ensure efficient allocation and
matchmaking to CMS workflows. Current uncertainties involve what types of resources will be available in the future, how to
prioritize diverse workflows to those diverse types, and how to deal with a diversity of policy preferences by the resource
providers. This contribution will describe the present capabilities of the CMS Submission Infrastructure and its critical
dependencies on the underlying tools (such as HTCondor and GlideinWMS), along with its necessary evolution towards a
full integration and support of heterogeneous resources according to the CMS needs.

22

CMS Submission Infrastructure - GPU Exploitation by CMS

References

Scalability of the CMS SI:
https://indico.cern.ch/event/948465/contributions/4323961/attachments/2246689/3811125/20210519_SI_vCHEP.pdf

GPU Scheduling in CMS O&C Week:
https://indico.cern.ch/event/1019627/contributions/4292602/attachments/2226284/3771092/Scheduling%20on%20heterogeneous%
20architectures.pdf

Online reconstruction on GPUs:
https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_C
MS_High_Level_Trigger.pdf

Benchmarking:
https://indico.cern.ch/event/948465/contributions/4323674/attachments/2246279/3810655/HEPiX_Benchmarking.pdf

23

https://indico.cern.ch/event/948465/contributions/4323961/attachments/2246689/3811125/20210519_SI_vCHEP.pdf
https://indico.cern.ch/event/1019627/contributions/4292602/attachments/2226284/3771092/Scheduling%20on%20heterogeneous%20architectures.pdf
https://indico.cern.ch/event/1019627/contributions/4292602/attachments/2226284/3771092/Scheduling%20on%20heterogeneous%20architectures.pdf
https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf
https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf
https://indico.cern.ch/event/948465/contributions/4323674/attachments/2246279/3810655/HEPiX_Benchmarking.pdf

CMS Submission Infrastructure - GPU Exploitation by CMS

Dynamic HTCondor pool

24

● GlideinWMS and pilot jobs
○ To access regular Grid resources (the majority

of the CMS resources)
○ The glideinWMS frontend looks at the user job

pressure
○ Matchmaking with resources defined in the

factory (CEs)
○ Frontend makes pilot job submission requests

to the factory
■ using the WMS HTCondor collector

○ Factory then sends pilot jobs using condor
Grid universe

○ Pilot job will then start the HTCondor startd
which will connect to the pool

CMS Submission Infrastructure - GPU Exploitation by CMS

GPU performance test code

import tensorflow as tf
import numpy as np
import time

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

n =10000
iters = 10000
tf.debugging.set_log_device_placement(True)

Create some tensors and multiply them
start = time.time()

for i in range(iters):
 #print("Iter: "+str(i))
 matrix1 = tf.random.normal([n,n], 0, 1, tf.float16)
 matrix2 = tf.random.normal([n,n], 0, 1, tf.float16)
 prod = tf.matmul(matrix1, matrix2)
 #print(prod.shape)
 #print(" ")

dt = time.time() - start

print("N="+str(iters)+" matrices of type "+str(n)+" multiplied in %f s" % dt)

25

