CMS

Evolution of the CMS Submission Infrastructure
to Support Heterogeneous Resources

Marco Mascheroni, Antonio Perez-Calero Yzquierdo
On Behalf of the CMS Submission Infrastructure team

HTCondor Workshop Spring 2021

Ciremalt PIC L C S D
E.ﬁ\ FENR RIS eomoon o port dinformacis U an viego

peous. Metomnberties
Y UNIVERSIDADES yTomoligas

Outline

The CMS experiment

The CMS Submission Infrastructure

CMS interest on GPUs

Allocating and using GPUs

Tests on GPUs already available for CMS
Accounting for GPUs usage

Conclusions

CMS Submission Infrastructure - GPU Exploitation by CMS 2

e Projections made in 2020 predicted ~4x gap in CPU
needs to address resource evolution by the
High-Luminosity LHC era (starting in 2027)

CMS Submission Infrastructure - GPU Exploitation by CMS

High Energy Physics general-purpose
experiment running at the LHC at CERN:

proton-proton collisions

Experimental data is stored, distributed,
reconstructed, and analyzed, comparing to
simulated data (Monte-Carlo)

60000

50000

20000

10000

Total CPU[kHS06-years]
<]
o
S

CMS Public
Total CPU

“ 2020 estimates

—m— Run4: 200PU and 275fb~1/yr, 7.5 kHz, no on-going R&D included
[-e- Run4:200PU and 500fb=1/yr, 10 kHz, no on-going R&D included
=== 10 to 20% annual resource increase

"
2020

|
2022

|
2024

Year

I
2026

I
2028

CMS computing public results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

The computing landscape

e Data traditionally analyzed using WLCG Grid

resources
o Global collaboration of around 170 computing centers

o Access based on pledges
o Homogeneous resources (VO Card)
e Began to exploit HPC as well
o E.g.: Cori, Stampede, Bridges, Theta, Expanse Frontera,

Marconi, BSC, ...
o Access based on allocations
o Heterogeneous resources (different architectures, network

segregation, GPUs, ...)

Within the CMS Experiment, the Submission Infrastructure (Sl) group organizes
HTCondor operations, the technology used to access all of these resources.

CMS Submission Infrastructure - GPU Exploitation by CMS

The CMS Submission Infrastructure Group @

e Part of CMS Offline and Computing in charge of:
o Organizing HTCondor and GlideinWMS operations in CMS, in particular of the Global Pool, an
infrastructure where reconstruction, simulation, and analysis of physics data takes place
o Communicate CMS priorities to the development teams of glideinWMS and HTCondor

e In practice:
o We operate a (vanilla) HTCondor pool peaking at 250k/300k cores distributed over 70 Grid
sites, plus non-Grid resources (HLT farm, HPC sites, Cloud)
o We regularly hold meetings with HTCondor and glideinWMS developers where we discuss
m Current operational limitations o et esrens (5 corms gty e
m Feature requests
m Future scale requirements 300Kk M |) i FWWH m

250000

200000

=
D
_2‘:,__{

Cores running in the Global 150k — Nf’ﬂm " '
Pool in the past 5 years M Wﬂ I W

50000 N

CMS Submission Infrastructure - GPU Exploitation by CMS ’ 112017 1112018 12019 1112020 112021 S

e The CMS S| model evolved to use
federated pools, with extensive use
of flocking

e Two sets of workflow managers:
CRAB + WMAgent

e The Global Pool is the biggest and
most important one:
o ~300k CPU cores
o 100k to 150k running jobs
o 50+ schedds
o 3 negotiators

® Redundant infrastructure for HA

A Complex Infrastructure

WMAgent
TO
schedds

CRAB
schedds

WMAgent
schedds

WMAgent
schedds

External
CMS
schedds

Negotiator

CERN Submission
Infrastructure
BEER Overview
Collector
Negotiator
HLT
s \l/\[WLCG
~ | Global
0SG
7 | |Pool
A4 T
Negotiator (x3) P c IOU DODAS
Pool
Collector
Negotiator HEPCloud
Volunteer
Collector BO'NC
Negotiator
submit
External Hock
HPC/Cloud/Other --T-
Collector

® Resources mainly acquired with GlideinWMS pilots
® Vacuum-like instantiated: slots (DODAS), BOINC(CMS@Home), opportunistic (HLT)...

CMS Submission Infrastructure - GPU Exploitation by CMS

Interest for GPUs

e Availability of graphics accelerators is increasing
o Not only HPC, but also among traditional WLCG resources

e Be prepared to run substantial part of processing at HPCs
o Shift driven by funding agencies
o High fraction of the computing power in HPCs coming from GPUs

CMS Submission Infrastructure - GPU Exploitation by CMS 7

CMS Software capabilities

e CMSSW framework orchestrates the data processing
o cmsRun is the payload process that ultimately runs on nodes at sites

e Allows to offload computation to GPU accelerators
o In process: on accelerators present on the the same node cmsRun is being executed. This is the focus of this
talk
o External: connecting to an external process possibly running on another node

e Heterogeneous trigger farm (HLT) featuring CPUs and GPUs for run 3
o Up to 25% of the HLT reconstruction code can be offloaded to GPUs (source)
o Offline data processing framework and algorithms are the same used online

e Framework able to dynamically use GPUs when they are available, or just use CPUs (and

take longer)
o More on this in a moment!

e NVidia CUDA as language

o Performance portability libraries are being investigated

CMS Submission Infrastructure - GPU Exploitation by CMS 8

https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf

Allocating and Scheduling workloads on GPUs

CMS Submission Infrastructure - GPU Exploitation by CMS 9

GPU node allocation: configuration @

e Pilot jobs need to be configured
o Typically we send 8-core partitionable pilots for CPU sites
o Whole node pilots are also possible

e Need to include GPUs in the slots now

Diverse modes available:

WN: 32 CPU, 2 GPU WN: 32 CPU, 2 GPU

Keep GPUs in a Whole node
2GPU 2CPU dedicated slot with configuration type
1 minimum CPU 2| | 32CPU 2GPU
30 CPU

e Currently using a mix depending on site admin preferences
o Either whole node configuration, or slots with 8 CPUs + 1 GPU

e Flexibility vs efficiency
o Whole nodes are more flexible but less fragmentation with the 8+1 slots

CMS Submission Infrastructure - GPU Exploitation by CMS 10

Matchmaking GPUs in CMS HTCondor Pool @

These are the CMS specifications foreseen for GPU-workload matchmaking

e Main switch

o request gpus to signal the necessity to use a GPU

o CMS Sl was asked to accomodate for a use case where payloads use GPUs “if available”
e Mandatory matching attributes

o GPUMemory (e.g.: 8000Mb, 16000Mb)

o CUDACapability (e.g.: 6.0, 6.5)

o CUDACompatibleRuntimes (e.g.:[11.1,11.2], [12.0,12.5]): list of runtimes provided by

running a CMS probing script in the pilot

e Monitor & Debug attributes

0 GPUName, CUDARuntimeVersion, CUDADriverVersion, ...

CMS Submission Infrastructure - GPU Exploitation by CMS 11

Tests on GPUs (I)

Tested matchmaking: jobs to GPUs pointing to all resources (sites)
e Measure their performance by executing a simple script:

o TensorFlow multiple (10k x 10k), float16, random matrix multiplication
Record execution time as metric correlated to performance

o Afunction of GPU model and average for each CMS site

GPUs in use during the tests

120

= T2_US_Purdue
T2_US_Caltech
100 T2_US_Vanderbilt e
T3_US_NotreDame 5/ 2 —

= TI_DEKIT B \\
80 | == T3.Us0SG / \
= T2_US_Wisconsin i

= T2_US Florida |
60 |

@ [\

0

04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
CMS Submission Infrastructure - GPU Exploitation by CMS

12

Tests on GPUs (ll)

e Execution time of identical payload as a metric of performance, by GPU type

Distribution of test job execution time results

® Quadro RTX 6000

® NVIDIA Tesla V100S-...
® Titan XP

® Titan X (Pascal)

100 @ GeForce GTX 1080

Distribution of test jobs by GPU type © GeForoe GTXTITAN X

TITAN X (Pascal) (3.66%) GeForce GTX TITAN X

TITAN Xp (11.44%)

Quadro RTX 6000 (41.19%)

NVIDIA Tesla V100S-PCIE-32GB (19.45%)

® Quadro RTX 6000
® NVIDIA Tesla V100S-...
® Titan XP
@ Titan X (Pascal)

@ GeForce GTX 1080 BRR2ZI388
GeForce GTX 1080 (21.97%) ® GeForce GTX TITAN X GPU Jo

CMS Submission Infrastructure - GPU Exploitation by CMS 13

S Log(Count)
S S —] S ——]
[e e el s

| —

Monitoring GPUs available to CMS

e Regularly scanning the Global Pool for GPU resources and their properties
o Submit pilots that run the HTCondor GPU discovery tool

e Resources are opportunistic in nature for now
o sites voluntarily adding GPUs to CMS pool

GPU resources

Site Entry CUDACapability CUDACIockMhz CUDAComputeUnits CUDACoresPerCU CUDADeviceName CUDADriverVersion CUDAECCEnabled CUDAGIobalMemoryMb
T2_US_Caltech CMSHTPC_T2_US_Caltech_cit2_gpu 5.2 1216 24 128 GeForce GTXTITANX 11 false 12213
T2_US_Caltech CMSHTPC_T2_US_Caltech_cit_gpu 52 1216 24 128 GeForce GTXTITANX 11 false 12213
T2_US_Caltech CMSHTPC_T2_US_Caltech_cit3_gpu 5.2 1216 24 128 GeForce GTXTITANX 11 false 12213
T3_US_0SG HCC_US_Omaha_crane_gpu 6.0 1329 56 64 Tesla P100-PCIE-16GB 11 true 16281
T3_US_0SG HCC_US_Omaha_crane_gpu 6.0 1329 56 64 Tesla P100-PCIE-12GB 11 true 12198
T3_US_0SG HCC_US_Omaha_crane_gpu 6.1 1582 28 128 GeForce GTX 1080 Ti 1 false 11178
T3_US_0SG HCC_US_Omaha_crane_gpu 6.1 1709 10 128 GeForce GTX 10606.. 11 false 6078
T2_US_Vanderbilt CMS_T2_US_Vanderbilt_ce6_gpu 6.1 1582 30 128 TITAN Xp 10 false 12196
T2_US_Vanderbilt CMS_T2_US_Vanderbilt_ce5_gpu 6.1 1582 30 128 TITAN Xp 10 false 12196
T2_US_Vanderbilt CMS_T2_US_Vanderbilt_ce6_gpu 6.1 1531 28 128 TITAN X (Pascal) 10 false 12196
T2_US_Vanderbilt CMS_T2_US_Vanderbilt_ce5_gpu 6.1 1531 28 128 TITAN X (Pascal) 10 false 12196
T3_US_0SG HCC_US_Omaha_crane_gpu 7.0 1380 80 64 Tesla V100-PCIE-32GB 11 true 32510
T2_US_Purdue CMSHTPC_T2_US_Purdue_Hamme... 7.5 1590 40 64 Tesla T4 1 true 15110
T3_US_0SG HCC_US_Omaha_crane_gpu 75 1815 48 64 Quadro RTX 5000 1 false 16125
T3_US_0SG Glow_US_Syracuse2_condor_gpu 75 1620 72 64 Quadro RTX 6000 11 true 22699
T3_US_0SG HCC_US_Omaha_crane_gpu 75 1770 72 64 Quadro RTX 8000 1 false 48601
T3_US_0SG Glow_US_Syracuse3_condor_gpu 75 1815 48 64 Quadro RTX 5000 1 false 16125
T3_US_0SG Glow_US_Syracuse2_condor_gpu 7.5 1815 48 64 Quadro RTX 5000 1 false 16125
T2_US_Wisconsin CMSHTPC_T2_US_Wisconsin_cms.. 7.5 1590 40 64 Tesla T4 n true 15110
T2_US_Wisconsin CMSHTPC_T2_US_Wisconsin_cms.. 7.5 1590 40 64 Tesla T4 mn true 15110
T2_US_Wisconsin CMSHTPC_T2_US_Wisconsin_cms... 7.5 1590 40 64 Tesla T4 n true 15110

CMS Submission Infrastructure - GPU Exploitation by CMS 14

CPU efficiency in the CMS HTCondor Global
Pool: typically high efficiency, we want to keep
it that way when moving to heterogeneous
resources!

Efficiency of use of Global Pool CPU

1.00

0.75
1/1/2020 4/1/2020 7/1/2020 10/1/2020 1/1/2021 4/1/2021

CMS Submission Infrastructure - GPU Exploitation by CMS

Efficiency in the exploitation of GPU nodes

Site policies matter: preference to use GPU slots
only when GPU workloads are available

Then, saturate the CPU part if possible

But vacate the slot as soon as the GPU part is
finished, to enable access for other jobs

e Considering preemption of the CPU part?
Would be the first time we use it in SI

Also, given late-binding, minimize pilots landing on a
GPU node when all the GPU jobs are gone

e Plan to keep removing pilots that are idle in
the site queues if necessary, like we do for
CPUs

® Common to regular CPU pilots, but more
critical for GPUs

(D

15

Open questions

CMS Submission Infrastructure - GPU Exploitation by CMS 16

GPU benchmarking & accounting

e Why benchmarking?
o Pledges definition and resource acquisition
o Acritical element in proper accounting of resource utilization

e The current standard HEP benchmark: HS06 (based on 2006 specification, no GPU)

o HEPScore as a replacement that has been developed by the HEPiX Benchmarking Working Group (source)
o Inclusion of GPUs is an ongoing development effort (using event processing throughput as performance metric)

e While the proper procedure for GPU usage accounting is defined, our simple proposal to start accounting
GPU usage would be to record all the data related to job execution time, along with GPU model, CUDA

libraries, etc.
o Use “GPU time”, as provided by HTCondor, in addition to GPUsAverageUsage and GPUsMemoryUsage

e A GPU benchmark will be needed to reasonably predict scaled execution time of CMS workloads
o Akey parameter for an efficient matchmaking of jobs to slots
m Up to now, reasonable assumption of approx. equal run times on all CPU resources
o The use of GPU coprocessors introduce a high degree of heterogeneity in the resources we can access, and their relative
throughputs
m Observed a 10x execution time difference on our very simple test jobs!

CMS Submission Infrastructure - GPU Exploitation by CMS 17

https://indico.cern.ch/event/948465/contributions/4323674/attachments/2246279/3810655/HEPiX_Benchmarking.pdf

Use GPU “if available”

Profit from framework flexibility to dynamically adapt workload to CPU or CPU+GPU environment
However, apparently a simple logic but not so easy to implement!

e Machine slots does not simply exist, they are created through pilot jobs based un user job requests

o Do we trigger a GPU pilot if a user job has “requires gpu” true, false, ifAvailable ?
e Matchmaking: how do you treat those user jobs in terms of shares and priorities compared to other GPU user jobs?
e Still something that needs to be clarified internally in CMS by defining clear policies

An example of flexible matchmaking conditions, CMS already has user jobs with variable number of CPUs (resizable jobs):

RequestCpus = WMCore ResizeJob ? RequestResizedCpus : OriginalCpus
RequestResizedCpus = (Cpus > MaxCores) ? MaxCores : ((Cpus < MinCores) ? MinCores : Cpus)

Focusing on the simple use case for now (request gpus is constant number).

CMS Submission Infrastructure - GPU Exploitation by CMS

18

Conclusions

CMS Submission Infrastructure - GPU Exploitation by CMS 19

Summary and Conclusions

Summary:

e The Submission Infrastructure is a stable and performant piece of CMS Computing, continuously being reviewed, upgraded
and expanded
e The landscape of resources for CMS is evolving towards higher heterogeneity
o GPU resources already added to the Global Pool.
o Opportunistic in nature so far, none of it is pledged to CMS up to now
o Already available for CRAB and CMSConnect users

e Submission Infrastructure focused on enabling efficient use of GPU nodes according to CMS preferred policies, which
requires customized matchmaking expressions

e The Submission Infrastructure is ready to accept GPU workloads
o Coordinate with Software and WM teams for realistic workload submission

o Use GPUs “IfAvailable” remains a problem to be solved
e GPU benchmarking and usage accounting to be clarified

We thank the HTCondor development team for the continued support to CMS SI, a model of excellent
partnership!

CMS Submission Infrastructure - GPU Exploitation by CMS 20

Extra Slides

CMS Submission Infrastructure - GPU Exploitation by CMS 21

Abstract

The landscape of computing power available for the CMS experiment is already evolving from almost exclusively x86
processors, predominantly deployed at WLCG sites, towards a more diverse mixture of Grid, HPC and Cloud facilities,
incorporating a higher fraction of non-CPU components, such as GPUs. The CMS Global Pool is consequently adapting to
the heterogeneous resource scenario, aiming at making the new resource types available to CMS. An optimal level of
granularity in their description and matchmaking strategy will be essential in order to ensure efficient allocation and
matchmaking to CMS workflows. Current uncertainties involve what types of resources will be available in the future, how to
prioritize diverse workflows to those diverse types, and how to deal with a diversity of policy preferences by the resource
providers. This contribution will describe the present capabilities of the CMS Submission Infrastructure and its critical
dependencies on the underlying tools (such as HTCondor and GlideinWMS), along with its necessary evolution towards a
full integration and support of heterogeneous resources according to the CMS needs.

CMS Submission Infrastructure - GPU Exploitation by CMS 22

References

Scalability of the CMS Sl:
https://indico.cern.ch/event/948465/contributions/4323961/attachments/2246689/3811125/20210519 S| vCHEP.pdf

GPU Scheduling in CMS O&C Week:

https://indico.cern.ch/event/1019627/contributions/4292602/attachments/2226284/3771092/Scheduling%200n%20heterogeneous%
20architectures.pdf

Online reconstruction on GPUs:
https://indico.hep.caltech.edu/event/883/attachments/648/824/A. Bocci - Towards a_heterogeneous _computing _farm_for the C
MS_High_Level_Trigger.pdf

Benchmarking:
https://indico.cern.ch/event/948465/contributions/4323674/attachments/2246279/3810655/HEPiX_Benchmarking.pdf

CMS Submission Infrastructure - GPU Exploitation by CMS 23

https://indico.cern.ch/event/948465/contributions/4323961/attachments/2246689/3811125/20210519_SI_vCHEP.pdf
https://indico.cern.ch/event/1019627/contributions/4292602/attachments/2226284/3771092/Scheduling%20on%20heterogeneous%20architectures.pdf
https://indico.cern.ch/event/1019627/contributions/4292602/attachments/2226284/3771092/Scheduling%20on%20heterogeneous%20architectures.pdf
https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf
https://indico.hep.caltech.edu/event/883/attachments/648/824/A._Bocci_-_Towards_a_heterogeneous_computing_farm_for_the_CMS_High_Level_Trigger.pdf
https://indico.cern.ch/event/948465/contributions/4323674/attachments/2246279/3810655/HEPiX_Benchmarking.pdf

o
¢
—+
=
@
n
c
[
ﬁ

CMS Submission Infrastructure - GPU Exploitation by CMS

Dynamic HTCondor pool

e GlideinWMS and pilot jobs

(@]

To access regular Grid resources (the majority
of the CMS resources)
The glideinWMS frontend looks at the user job
pressure
Matchmaking with resources defined in the
factory (CEs)
Frontend makes pilot job submission requests
to the factory

m using the WMS HTCondor collector
Factory then sends pilot jobs using condor
Grid universe
Pilot job will then start the HTCondor startd
which will connect to the pool

24

GPU performance test code

import tensorflow as tf
import numpy as np
import time

print(, len(tf.config.list_physical_devices()

n =
iters =
tf.debugging.set_log_device_placement(True)

Create some tensors and multiply them
start = time.time()

for i in range(iters):
#print("lter: "+str(i))
matrix1 = tf.random.normal([n,n], O, 1, tf.float16)
matrix2 = tf.random.normal([n,n], O, 1, tf.float16)
prod = tf.matmul(matrix1, matrix2)
#print(prod.shape)
#print(" ")

dt = time.time() - start

print(+str(iters)+

CMS Submission Infrastructure - GPU Exploitation by CMS

