ML and Image Analyses for Livestock Data

Joao Dorea

Assistant Professor

Department of Animal and Dairy Sciences

Department of Biological Systems Engineering

High-Throughput Phenotyping: animal-level

Animal-level information for optimized decision and genetic selection

Sensors: Wearable Cameras IR Spec. RFID Sound Housing Animal Identification Animal Behavior Body Weight BCS/Composition Milk Components Milk Yield Estrus Event Feed Intake Feed Efficiency GGE

Cheap + Precise + Real-Time

Why Computer Vision Systems?

Can I use other sensing technologies?

Non-Grazing

A single image can be extremely informative! ...it can go beyond your primary interest!

Ribeiro et al., 2021 (submitted) - JAS

Computer Vision Systems: Image Analyses

- Complex dataset to analyze
- Variety of tasks: **Deep Learning** context

Monitoring Animal Behavior

Early detection of diseases, social interaction, welfare, feed efficiency, estrus, locomotion, etc.

Monitoring Animal Behavior

Monitoring Feeding Behavior

Hand Motion

Predicting body weight in dairy calves through 3D images

Cominote et al., 2020 Dorea et al., 2019 Fernandes et al., 2019

Ferreira et al., 2021 - ADSA

First Step: Animal identification using 2D images

- 59 lactating dairy cows
- Training set: 13,222 images automatically acquired at UW-Madison
- *Testing set: 617 images test*
- Avg accuracy: ~94% to identify individual animals

Animal identification using 2D images

• It will not work for similar color patterns

Animal identification using 3D images

Using 3D: Voxels Point Cloud

3D CNN VoxNet/PointNet

Using HTCondor: Animal Identification + Body Condition Score

Using HTCondor: Animal Identification + Body Condition Score

Infrared

Depth

What about inference? – Azure

- Total processed images: 104,494 (52,247 png, 52,247 tiff)
- Good images (segmented, identified, BCS calculated): 19,163
- Total execution time: 6,441 hours (total time: from image upload to final SQL insert, not only inference!):
 - Several tasks (transfer time, SQL insert, image storage: masks, cropped, ident, BCS);
- Azure logs shows memory allocated but not memory used and the max memory allocated per instance is 1.5GB
- Max parallel instances count: 200

We would love to use HTCondor for automated inference (real-time?)

Using HTCondor: Animal Identification + Body Condition Score

Infrared

Depth

We would need to retrain <u>daily</u> (60 cows only):

Number of images	~13,000
Training time	10 hours
Disk usage	10.7 GB
GPU	1
GPU Memory used	38 GB
RAM	5.7 GB

A farm with 6,000 cows would require significant computational resources!

Our Camera System at UW-Madison

We have:

- 40 RGB Cameras collecting data every 5 seconds;
- Depth cameras collecting 3D images and infrared twice a day of every single cow;

We generate:

- 1.38 TB of RGB per day
- 10 GB of 3D and Infrared images (500 cows)

Our Vision:

Create state-of-the-art computer vision systems and the largest public database for livestock (image, audio, sensor)

Using HTCondor

Our Challenges:

- Frequent transfer of large databases for each new training process;
- Number of GPUs for concurrent jobs;
- User-Friendly interface for general public usage (e.g. Animal Science, Agronomy, BSE, Vet students) – Graphical Interface (commands), teaching?
- Example: Azure Lab Services (Deployment of VMs for each student with Linux or Windows interface GPU labs);

Using HTCondor

Opportunities:

- Development of state-of-the-art computer vision systems for livestock operations;
- Training and implementation of complex deep learning algorithms for image analyses;
- Analyses of large imaging datasets (100+ concurrent jobs);
- Collaborations to develop automated training and inference strategies using HTCondor infrastructure;
- Publications of high-impact (realistic research) research in the field of Digital Agriculture

Our Research Group

Digital Livestock Lab

Research Group:

Dr. Luiz Gustavo Pereira (Visiting Scientist)

Dr. Tiago Bresolin (Research Associate)

Dr. Dario Oliveira (Research Associate)

Rafael Ferreira (PhD Student)

Ariana Negreiro (PhD Student)

Caleb LaCount (Undergraduate Student)

Acknowledgments

United States Department of Agriculture National Institute of Food and Agriculture

CENTER FOR HIGH THROUGHPUT COMPUTING Christina Koch Lauren Michael Brian Bockelman Miron Livny

Thank you!

joao.dorea@wisc.edu

