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Why am I here?

• To promote early-stage drug discovery 
efforts on campus!

• Find active molecules that modulate 
therapeutically relevant mechanism. 
Develop as probes or leads.

• Early-stage drug discovery is a needle-
in-the-haystack problem—could be 1033

drug-like organic molecules.*

• Conventional HTS approach too 
expensive. 

*Polishchuk PG, et al., JCAMD 2013 27(8):675-9



What is VS?

• Virtual Screen: use a computer 
model to evaluate a chemical 
library. Prioritize some subset 
for testing.

• VS models predict potential for 
compound-target interaction or 
assay read-out.

• Goal is in enrichment for 
actives. Highly enriched subset 
reduces costs—enables focused 
screening.



Searching chemical space for hits

High Throughput Screening

• test 104-106 cpds

• generates valuable real data

• expensive

• noisy

• can’t scale to ultra-large libraries

• Assay must be developed!

Virtual Screening + focused testing

• VS 108-1012
→ test 102-104 cpds

• limited real data generation

• cheap

• VERY noisy

• scales to ultra-large libraries (109-1012)

• VS models have data requirements



Hoffmann & Gastreich “The 
next level in chemical space 
navigation: going far beyond 
enumerable compound 
libraries.” Drug Discovery 
Today, 2019, 24, 5, 1148-1156. 

Virtual and Physical 
Chemical Libraries

Walters P. “Virtual Chemical Libraries.” J. Med. Chem. 2019, 62, 3, 1116-1124
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SBVS

Structure-based virtual 
screening



What is docking?

• Docking uses 3D molecular models to 
determine the optimal compound 
binding orientation on a given target.

• Search is guided by a scoring function 
that evaluates favorability of each 
sampled configuration.

• Many docking programs exist with 
different search strategies and scoring 
functions.

• Docking score is crude estimate of 
binding favorability for a given 
compound.



Sort Compounds 

by Docking 

Scores

Score Distributions

Inactives

Actives

Structure-based virtual screening

Scores

Number of
Compounds

MOLID SCORE
ZINC36206438 58.63
ZINC59310217 58.72
ZINC61596674 56.35
ZINC67458535 47.40
CHEMBL1221861 60.66
ZINC10123401 52.39
ZINC64526095 66.13
ZINC24002103 56.72
ZINC09612655 58.84
ZINC24002105 38.95
CHEMBL38532 74.19
ZINC40824467 50.10
ZINC59829723 58.29
ZINC37520295 44.78
ZINC49812309 38.01
ZINC14558020 53.31
CHEMBL472090 58.71
ZINC36207525 69.07
ZINC14010625 68.48
CHEMBL274782 63.97
ZINC63949457 55.35
ZINC39657146 48.74
ZINC23197109 58.72
ZINC25520953 63.14
ZINC09282496 43.71
ZINC60343267 62.18
ZINC58790750 62.53
CHEMBL400392 65.96
ZINC52096905 49.96
ZINC48922871 49.59
ZINC33058380 45.11
ZINC64684798 56.64
ZINC21076300 68.36
ZINC29461868 50.65
CHEMBL26183 58.56
ZINC61908006 66.40
ZINC15429053 54.10
CHEMBL323258 74.94
ZINC05091951 58.47
ZINC02759924 48.25
ZINC54596097 42.68
ZINC19899314 65.54
ZINC53113244 38.99
ZINC40947055 61.87
ZINC36611787 60.04
CHEMBL419085 65.96
ZINC35844701 58.57
ZINC01296699 39.07
ZINC39914438 49.68
ZINC00706129 48.34
ZINC34747432 52.55
ZINC43220997 47.45
ZINC37619890 54.49
ZINC15666896 55.50
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ZINC40824467 50.10
ZINC52096905 49.96
ZINC39914438 49.68
ZINC48922871 49.59
ZINC39657146 48.74
ZINC00706129 48.34
ZINC02759924 48.25
ZINC43220997 47.45
ZINC67458535 47.40
ZINC33058380 45.11
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ZINC09282496 43.71
ZINC54596097 42.68
ZINC01296699 39.07
ZINC53113244 38.99
ZINC24002105 38.95
ZINC49812309 38.01

Dock Compound Library



Docking-based VS performance on 6 benchmark targets from DUD-E



Docking Compute Expense

Program Time Std. Dev.
AD4 435.6 197.1
Dock 719.2 592.9
Fred 15.6 5.7
Hybrid 9.3 2.9
Plants 43.4 20.5
rDock 49.3 26.7
Smina 250.1 172.8
Surflex 78.9 1159.6

▪ Compute time for docking depends the search space, search 
quality, and complexity of the scoring function.

▪ To dock millions of compounds, we cut corners.

▪ Docking time varies between programs (~1 minute/compound).

(seconds)



Dock6

AutoDock4

Raw docking scores from each program are normalized and 
then fed into a Consensus operation—this can be taking a 
mean, maximum, or median of the 4 scores.

If labeled data are available for target, “Supervised” consensus 
could also be used by weighting different program scores for 
optimal separation--like logistic regression, random forest, etc.

Target Protein

FRED

Surflex

Decoys
Actives

Consensus Scoring 

Scores

Normalize
Scores

Consensus

.

.

.



Ericksen et al.,  J. Chem. Inf. Model. 2017, 57, 7, 1579-1590        DOI: 10.1021/acs.jcim.7b00153

Virtual screening performance on N=21 benchmark targets



How do we scale to HTC resources?

• Each docking run is independent--pleasantly parallelizable!

• Typical docking codes don’t benefit from specialized hardware or multiple cores.

• To maximize throughput:

• Enable “Flock” and “Glide” to access more nodes.

• Split compound library up into small chunks. 

• Number of compounds should run in ~2hr for a given docking program. 

• Chunk size varies from 5—500 compounds!

• Dock each chunk on a single slot to scavenge ANY open slots. Dock compounds in chunk serially.

• Checkpointing is enabled and a wrapper script is used to track the compounds completed in case 
job is evicted and migrates to another node.



How does SBVS benefit from HTC?

• Can’t really see how docking-based VS works without proper testing/validation!

• Examine performance over many targets

• Benchmarking of different docking programs

• Extensive docking parameter testing/validation

• Dock large compound sets
• Recently performed SBVS on 8 million and 40 million cpd in-stock libraries

• Hypothetical 100 node cluster = 3.5 million/day

• 100s of millions to BILLIONS of dockings!



LBVS

ligand-based virtual 
screening



Ligand-Based VS—a ML hit-finding model

Gitter Lab:  Liu, et al., “Practical Model Selection for Prospective Virtual Screening.” J. Chem. Inf. Model. 2019, 59, 1, 282–293. 
https://doi.org/10.1021/acs.jcim.8b00363

https://doi.org/10.1021/acs.jcim.8b00363


LBVS on Ultra-Large Virtual Chemical Library

Train RF model on prior screening data (PriA-SSB interaction)
• LifeChem Diversity Sets 1-3: 74,763 cpds (primary and retest)
• LifeChem Diversity Set 4: 25,278 cpds (primary only)
• MLPCN (NIH probe set): 337,104 cpds (primary and retest)

Total:  427,300 cpds, number of actives: 554  (hit rate = 0.13%)

VS Procedure
• Download Enamine REAL database 1.077 billion cpds (Oct 11, 2019)—SMILES format.
• Split library up into 18 batches (each 60.3 million)
• Run each batch as a single job on generic CPU compute node on HTCondor

• Single core, ~5GB RAM, 32 GB disk
• SMILES canonicalized/de-salted and converted to ECFP4 fingerprints
• ECFP4 fingerprints scored by pre-trained random forest classifier.
• Average compute time of 3.24 ms per compound
• Mean run time per 60 million cpd batch = 53.2 hours   (standard deviation=6.4 hr)

Gitter Lab: Alnammi M. et al., “Scalable supervised learning for synthesize-on-demand chemical libraries.” manuscript in prep



Dose-response testing of 68 compounds ordered from Enamine

Gitter Lab: Alnammi M. et al., “Scalable supervised learning for synthesize-on-demand chemical libraries.” manuscript in prep



VS for ultra-large virtual libraries

• LBVS with RF and fingerprints easily scales to 1.0 billion cpds

• SBVS study required 5 million CPU hours to evaluate 1.3 billion cpds. 
• Gorgulla, C., et al., “An open-source drug discovery platform enables ultra-large virtual screens.” Nature 2020,580, 663–668.

• Another SBVS used 27,612 GPUs to score 1.37 billion in < 24 hours. 
• Glaser, J., et al., “High-throughput virtual laboratory for drug discovery using massive datasets.” The International Journal of

High Performance Computing Applications.

• We have applied SBVS in consensus docking screens with 6 programs on 
libraries up to ~40 million cpds.



TIERED APPROACH FOR SBVS

Synthesized-on-demand virtual library 

10 – 100 billion cpds (SMILES)

1 – 10 billion cpds (SMILES)

5-200 million cpds

PROPERTY 

FILTER

ROCS

Fast Docking

Consensus Docking

MD/ML-based affinity?

0.1 – 5 billion cpds (3D)

2-20k 

cpds

50-500 

cpds

clustering

$$$



Conclusions

HTC is a fabulous resource for VS.

Rapid cycles of development, testing, validation of VS

Scaling to ultra-large virtual chemical libraries.

Access to large numbers of GPU nodes might enable 
CNN-based scoring in docking or rigorous MD-based 
approaches for absolute ligand binding free energy.
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Extras



• Score distribution of 
actives (red) is 
shifted relative to 
inactives (blue).

• Interestingly, the 
standard deviation 
in scores was also 
higher for actives 
than for decoys

Ericksen et al.,  J. Chem. Inf. 
Model. 2017, 57, 7, 1579-1590        
DOI: 10.1021/acs.jcim.7b00153


