Using HTC to develop precision mental health algorithms

Gaylen Fronk, Hannah Moshontz, & John Curtin
University of Wisconsin-Madison
HTCondor Week
May 27, 2021
Background: Traditional Treatment Assignment

75% Effective

25% Effective
Background: Precision Mental Health

The application of precision medicine to mental health conditions

Goal: to use individual differences to select the treatment with the highest predicted treatment efficacy for a given patient

1. Increase likelihood of treatment success within an individual

2. Improve treatment effectiveness rates across the population
Background: Machine Learning

• Offers a path forward for precision mental health

• Maps onto complexity of people and clinical phenomena

• Prioritizes out-of-sample prediction
Model Fitting

Models include:

• Treatment condition
• ~400 individual difference predictors
• Outcome (treatment success at 6 months)
Model Fitting

• Model configurations include:
 • Statistical algorithms (e.g., elastic net logistic regression, random forest, k-nearest neighbors, neural networks)
 • Algorithm-specific characteristics (e.g., hyperparameters, number of hidden layers)
 • Feature sets & feature engineering decisions
Model Fitting

• Example:
 • Statistical algorithm: random forest
 • Algorithm-specific characteristics: 3 hyperparameters with varying levels, total of 100 combinations
 • Feature sets & feature engineering decisions: models with self-report items or self-report scales

• Total: 200 models to fit
Jobs Setup

• To maximize parallelism of CHTC, we break down model fitting into the smallest jobs possible
 • Single combination of statistical algorithm, algorithm characteristics, and feature characteristics run as one job

• Jobs are run across CHTC and Open Science Grid machines

• We aggregate jobs locally to select the model configuration that performed best across cross-validated iterations
Computing Time

- Each model takes anywhere from 1 – 5 minutes to run

- Even running in parallel locally, it would take days to fit single scenarios
 - This is ~650 computing hours just for the previous example scenario!

- Computing time multiplied by “intended” scenarios as well as testing and iteration
Using CHTC & HTCondor

• Most important feature is the CHTC support team!

• Also helpful are clear documentation and walkthroughs

• Have also benefitted from within-lab collaboration across multiple projects using CHTC
Impact

• Precision mental health research and algorithm building will only be possible with this kind of computing power

• Allows me to maximize time, resources, and person power

• Allows me to expand my research and funding opportunities
 • Incorporating genetics
 • UW Seed Grant
 • Fellowship application
Thank you!