1 - NQ (~

Early SUSY searches at LHC without E_T^{miss}

Andre Lessa

Homer L. Dodge Department of Physics and Astronomy University of Oklahoma

PHENO, 2009

Andre Lessa SUSY searches without E^{miss}

(日)

H. Baer, A. Lessa and H. Summy Early SUSY discovery at LHC via sparticle cascade decays to same-sign and multimuon states. Phys.Lett.B674:49-53, 2009.

H. Baer, V. Barger, A. Lessa and X. Tata Discovery potential of LHC for supersymmetry at $\sqrt{s} = 10$ TeV without and with E_T^{miss} . soon to appear on arXiv

SUSY at LHC OO	SUSY without E_T^{mas}	Results	Conclusions
Outling			

- Standard Search Channels
- Early Run

- Multimuon Channel
- Dijet Channel

SUSY at LHC ●○

イロト イポト イヨト イヨト ヨ

1= 9QC

SUSY at LHC ●○

Standard Search Channels

• *jets* + E_T^{miss} (no isolated leptons)

SUSY at LHC ●○ SUSY without E_T^{mis}

Results 000000 Conclusions

- $jets + E_T^{miss}$ (no isolated leptons)
- $1\ell + jets + E_T^{miss}$

- $jets + E_T^{miss}$ (no isolated leptons)
- $1\ell + jets + E_T^{miss}$
- opposite-sign isolated leptons (OS)+jets + E_T^{miss}

- $jets + E_T^{miss}$ (no isolated leptons)
- $1\ell + jets + E_T^{miss}$
- opposite-sign isolated leptons (OS)+jets + E_T^{miss}
- same-sign isolated leptons (SS)+jets + E_T^{miss}

- $jets + E_T^{miss}$ (no isolated leptons)
- $1\ell + jets + E_T^{miss}$
- opposite-sign isolated leptons (OS)+jets + E_T^{miss}
- same-sign isolated leptons (SS)+jets + E_T^{miss}
- $3\ell + jets + E_T^{miss}$

- $jets + E_T^{miss}$ (no isolated leptons)
- $1\ell + jets + E_T^{miss}$
- opposite-sign isolated leptons (OS)+jets + E_T^{miss}
- same-sign isolated leptons (SS)+*jets* + E_T^{miss}
- $3\ell + jets + E_T^{miss}$
- $4\ell + jets + E_T^{miss}$

- $jets + E_T^{miss}$ (no isolated leptons)
- $1\ell + jets + E_T^{miss}$
- opposite-sign isolated leptons (OS)+jets + E_T^{miss}
- same-sign isolated leptons (SS)+jets + E_T^{miss}
- $3\ell + jets + E_T^{miss}$
- $4\ell + jets + E_T^{miss}$
- hard, isolated $\gamma + jets + E_T^{miss}$

SUSY at LHC ○●	SUSY without $E_T^{ m miss}$	Results 000000	Conclusions
Early Run			

= 990

.

SUSY at LHC ○●	SUSY without $E_{\mathcal{T}}^{ ext{miss}}$	Results 000000	Conclusions
Early Run			

- E_T^{miss}
 - dead cells, hot cells, cracks and mismeasurements
 - cosmic rays, beam halo

= 900

SUSY at LHC ○●	SUSY without E_T^{miss}	Results 000000	Conclusions
Early Run			

- E_T^{miss}
 - dead cells, hot cells, cracks and mismeasurements
 - cosmic rays, beam halo
 - Particle ID
 - low energy electrons
 - b and τ tagging (?)

= 900

SUSY at LHC ○●	SUSY without E_T^{miss}	Results 000000	Conclusions
Early Run			

- E_T^{miss}
 - dead cells, hot cells, cracks and mismeasurements
 - cosmic rays, beam halo
- Particle ID
 - low energy electrons
 - *b* and τ tagging (?)

But it should not be so hard to ...

- Measure general jet features (*p*_T, φ, η)
- Identify isolated muons

SUSY at LHC ○●	SUSY without E_T^{miss}	Results 000000	Conclusions
Early Run			

- E_T^{miss}
 - dead cells, hot cells, cracks and mismeasurements
 - cosmic rays, beam halo
- Particle ID
 - low energy electrons
 - b and \(\tau\) tagging (?)

But it should not be so hard to ...

- Measure general jet features (*p*_T, φ, η)
- Identify isolated muons

SUSY without	E_{τ}^{miss}		
SUSY at LHC 00	SUSY without E_T^{miss}	Results 000000	Conclusions

	mice	000000	
SUSY without E			

SUSY cascade decays are rich in µ's

SLICY without E	miss	00000	
SUSY without F			

- SUSY cascade decays are rich in μ's
- SUSY events usually have ≥ 4 hard jets

	miss	000000	
00		000000	
SUSY at LHC	SUSY without ET	Results	Conclusions

- SUSY cascade decays are rich in µ's
- SUSY events usually have ≥ 4 hard jets
- Large E_{T}^{miss} affects the event topology

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
SUSY without E	miss		

- SUSY cascade decays are rich in µ's
- SUSY events usually have ≥ 4 hard jets
- Large E_T^{miss} affects the event topology

Suggested Channels (no E_T^{miss} cuts):

SUSY at LHC	SUSY without E_T^{mass}	Results	Conclusions
SUSY without I	miss		

- SUSY cascade decays are rich in µ's
- SUSY events usually have ≥ 4 hard jets
- Large E_T^{miss} affects the event topology

Suggested Channels (no E_T^{miss} cuts):

- Multimuon channel
 - \geq 2 hard jets • $\mu^{\pm}\mu^{\pm}, \mu^{+}\mu^{-}, 3\mu$

SUSY at LHC 00	SUSY without E_T^{minss}	Results 000000	Conclusions
SUSY withou	$t E_{\tau}^{\text{miss}}$		

- SUSY cascade decays are rich in µ's
- SUSY events usually have \geq 4 hard jets
- Large E_T^{miss} affects the event topology

Suggested Channels (no E_T^{miss} cuts):

- Multimuon channel
 - \geq 2 hard jets • $\mu^{\pm}\mu^{\pm}, \mu^{+}\mu^{-}, 3\mu$

Zero lepton, dijet channel (Randall/Tucker-Smith, 2008)

•
$$\alpha = p_T(j_2)/m(j_1j_2)$$

- Δφ(j₁ j₂)
- $p_T(j_1) + p_T(j_2)$

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
SUSY without E	miss T		

- SUSY cascade decays are rich in µ's
- SUSY events usually have \geq 4 hard jets
- Large E_T^{miss} affects the event topology

Suggested Channels (no E_T^{miss} cuts):

- Multimuon channel
 - \geq 2 hard jets • $\mu^{\pm}\mu^{\pm}, \mu^{+}\mu^{-}, 3\mu$

Zero lepton, dijet channel (Randall/Tucker-Smith, 2008)

•
$$\alpha = p_T(j_2)/m(j_1j_2)$$

- Δφ(j₁ j₂)
- $p_T(j_1) + p_T(j_2)$

SUSY at LHC 00

Results

Multimuon Channel

Cuts:

- $N(j) \ge 4$, $p_T(j_1) > 100 \text{ GeV}$, $p_T(j) > 50 \text{ GeV}$
- *p*_T(µ) > 10 GeV

Event Simulation:

 BG: AlpGen (+ MLM matching), MadGraph + Pythia

Signal: Isajet

Figure: Muon multiplicity cross sections expected from the SPS1a' mSUGRA point, along with SM background at LHC with $\sqrt{s} = 10$ TeV.

SUSY at LHC 00	SUS	Y without $E_T^{\rm miss}$	Results 0●0000	Conclusions

Multimuon Channel

Figure: SS dimuon $\Delta \phi$ distribution from SPS1a', along with SM backgrounds at LHC with $\sqrt{s} = 10$ TeV.

★ 문 ► ★ 문 ►

1= 9QC

Multimuon Channel

Figure: Reach of the $\sqrt{s} = 10$ TeV LHC for mSUGRA models with $A_0 = 0$, tan $\beta = 45$ and $\mu > 0$ via OS and SS dimuon $+ \ge 4$ jet events in the m_0 vs. $m_{1/2}$ plane, for various integrated luminosity values.

• • • • • • •

= 200

SUSY at LHC

Multimuon Channel

Figure: Reach of the $\sqrt{s} = 10$ TeV LHC for mSUGRA models with $A_0 = 0$, tan $\beta = 45$ and $\mu > 0$ in the multimuon channel with $+ \ge 2$ jets and optimized cuts for $n(\mu)$, $p_T(jet)$ and N(jet) in the m_0 vs. $m_{1/2}$ plane.

SUSY at LHC 00	SUSY without E_T^{miss}	Results ○○○○●○	Conclusions
Dijet Channel			

Cuts:

• N(j) = 2, N(lep) = 0, $p_T(j_1) + p_T(j_2) > 500$ GeV

Figure: $\Delta \phi$ and α distributions for the mSUGRa point SPS1a' and the SM background (QCD dijets, $Z(\rightarrow \nu \bar{\nu}) + 2$ jets and $W(\rightarrow \nu l) + 2$ jets)

• • = • • = •

三日 のへの

Figure: Reach of the $\sqrt{s} = 10$ TeV LHC for mSUGRA models with $A_0 = 0$, tan $\beta = 45$ and $\mu > 0$ in the dijet channel with optimized cuts for $\alpha(j_1j_2)$, $\Delta\phi$ and $p_T(j_1) + p_T(j_2)$ in the m_0 vs. $m_{1/2}$ plane.

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
Summary			

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
Summary			

If E_T^{miss} is not reliable at the first run, early SUSY searches with no E_T^{miss} cuts are possible

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
Summary			

- If E_T^{miss} is not reliable at the first run, early SUSY searches with no E_T^{miss} cuts are possible
- The multimuon channel allows to probe high m_0 and low $m_{1/2}$ ($m_{\tilde{t}_1} \lesssim 800$ GeV, $m_{\tilde{g}} \lesssim 700$ GeV, at 0.2 fb⁻¹)

SUSY at LHC OO	SUSY without $E_T^{\rm miss}$	Results 000000	Conclusions
Summary			

- If E_T^{miss} is not reliable at the first run, early SUSY searches with no E_T^{miss} cuts are possible
- The multimuon channel allows to probe high m_0 and low $m_{1/2}$ ($m_{\tilde{t}_1} \lesssim 800$ GeV, $m_{\tilde{g}} \lesssim 700$ GeV, at 0.2 fb⁻¹)

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
Summary			

- If E_T^{miss} is not reliable at the first run, early SUSY searches with no E_T^{miss} cuts are possible
- The multimuon channel allows to probe high m_0 and low $m_{1/2}$ $(m_{\tilde{t}_1} \lesssim 800 \text{ GeV}, m_{\tilde{g}} \lesssim 700 \text{ GeV}, \text{ at } 0.2 \text{ fb}^{-1})$

• The multimuon channel could be useful for \mathcal{R} models searches

SUSY at LHC OO	SUSY without E_T^{miss}	Results 000000	Conclusions
Summary			

- If E_T^{miss} is not reliable at the first run, early SUSY searches with no E_T^{miss} cuts are possible
- The multimuon channel allows to probe high m_0 and low $m_{1/2}$ $(m_{\tilde{t}_1} \lesssim 800 \text{ GeV}, m_{\tilde{g}} \lesssim 700 \text{ GeV}, \text{ at } 0.2 \text{ fb}^{-1})$

- The multimuon channel could be useful for \mathcal{R} models searches
- These channels may help to corroborate a E_T^{miss} discovery

SUSY at LHC OO	SUSY without $E_{\mathcal{T}}^{\mathrm{miss}}$	Results 000000	Conclusions
Summary			

- If E_T^{miss} is not reliable at the first run, early SUSY searches with no E_T^{miss} cuts are possible
- The multimuon channel allows to probe high m_0 and low $m_{1/2}$ $(m_{\tilde{t}_1} \lesssim 800 \text{ GeV}, m_{\tilde{g}} \lesssim 700 \text{ GeV}, \text{ at } 0.2 \text{ fb}^{-1})$

- The multimuon channel could be useful for \mathcal{R} models searches
- These channels may help to corroborate a E_T^{miss} discovery
- Excesses in the multimuon or dijet channel may give hints on where to start looking for SUSY...

Detector:

- $\Delta\eta \times \Delta\phi = 0.05 \times 0.05$ and $-5 < \eta < 5$
- Hadronic calorimetry: 80%/ \sqrt{E} + 3% for $|\eta|$ < 2.6 and 100%/ \sqrt{E} + 5% for $|\eta|$ > 2.6
- Electromagnetic calorimetry: $3\%/\sqrt{E} + 0.5\%$

Cuts:

• Jets:
$$R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$$
, $E_T(jet) > 25$ GeV, $|\eta| \ge 3.0$

- Isolated leptons: $p_T(I) > 5$ GeV with visible activity within a cone of $\Delta R < 0.2$ of $\Sigma E_T^{cells} < 5$ GeV
- Muons: p_T(I) > 10 GeV, |η| ≥ 2.0

= 200