Randall-Sundrum graviton spin determination using azimuthal angular dependence

Vikram Rentala (UC Berkeley & IPMU)

arXiv:0904.4561 [hep-ph] (with H. Murayama)

Presentation Outline

- Using Quantum Interference of Helicity Amplitudes to measure spin
- Challenge of spin measurement at the LHC
- Application of this technique to the RS graviton case at the LHC

Why measure spin?

UED: Spin-1/2

Susy: Spin-0

Collider Physics Angles

Model Independent Technique for Measuring Spins

Back to Fundamentals

 e_{ij}

- Spin is a type of angular momentum
- Angular momentum generates rotations $U(\vec{n}, \varphi) = e^{i(\vec{J}.\vec{n})\varphi}$
- We can isolate spin from orbital angular momentum by considering the component of angular momentum in the direction of motion of a particle

$$J_z = \vec{J} \cdot \hat{p} = (\vec{s} + \vec{r} \times \vec{p}) \cdot \hat{p} = \vec{s} \cdot \hat{p} = h$$

Model Independent Technique for Measuring Spins

- Production plane provides a reference orientation
- Rotating the decay plane about the +z axis by an angle φ → action of this rotation on the matrix element of the decay must be equivalent to the action of rotation on the parent particle by φ.

$$\mathcal{M}_{decay}(\phi) = e^{+ih\phi} \mathcal{M}_{decay}(\phi = 0)$$

M. R. Buckley, H. Murayama, W. Klemm, V. Rentala (hep-ph/0711.0364)

Quantum Interference of Helicity States

Vector Boson

Spinor $\mathcal{M}_{\uparrow} \propto e^{i\phi_1/2}$ $\mathcal{M}_{\downarrow} \propto e^{-i\phi_1/2}$

• If multiple helicity states are produced this phase dependence is observable

$$\frac{d\sigma}{d\phi} \propto |\sum_{h} \mathcal{M}_{prod} e^{+ih\phi} \mathcal{M}_{decay}(\phi=0)|^2$$

- True within the validity of the narrow width approximation ("weakly coupled" physics)
- As a result of interference the differential cross-section develops a cos(nφ) dependence, where n = h_{max}-h_{min} = 2s.

The Bottom Line

Scalar:
$$\frac{d\sigma}{d\varphi} = A_0$$

Spinor: $\frac{d\sigma}{d\varphi} = A_0 + A_1 \cos(\varphi)$

Vector boson: $\frac{d\sigma}{d\varphi} = A_0 + A_1 \cos(\varphi) + A_2 \cos(2\varphi)$

Tensor (spin-2): $\frac{d\sigma}{d\phi} = A_0 + A_1 \cos(\phi) + A_2 \cos(2\phi) + A_3 \cos(3\phi) + A_4 \cos(4\phi)$

Look for the highest cosine mode to determine the spin!*

*(Can set a lower bound on the spin of a particle)

• <u>This argument is based entirely on Quantum Mechanical principles</u>, to actually compute the coefficients requires Feynman diagrams!

The Large Hadron Collider

Applying this technique at the LHC

- Missing energy events are not reconstructible
- Odd modes
 disappear
- Have to adjust for detector cuts

Randall-Sundrum Graviton spin?

RS case: Fully reconstructible! No missing energy.
 Spin measurement easier.

- Unique signature! $\rightarrow \cos(4\emptyset) \mod \frac{d\sigma}{d\varphi} = A_0 + A_1 \cos(\varphi) + A_2 \cos(2\varphi) + A_3 \cos(3\varphi) + A_4 \cos(4\varphi)$
- Background is from spin-1 particles. No contribution to the 4-mode! ... but contributes to the overall normalization of the cross-section.

Parameter Space

Can see a cos(4Ø) mode in addition to the cos(2Ø) mode! (with about 3% strength)
Error in |A₄/A₀| in this example is ~ 20%

2- determination of Graviton spin

H. Murayama, V. Rentala arXiv:0904.4561 [hep-ph]

2-o determination of Graviton spin

2-σ distinction from scalar

Conclusions and Summary

- Spin measurement at LHC is a challenge, but for RS gravitons looks quite feasible
- ~3% signal in |A₄/A₀| for values of m₁ < 1 TeV and large values of the coupling c ~ 0.1.
- Can distinguish scalars from spin-2 objects easily even with low luminosities! (Look at |A₂/A₀|)
- Error in measurement only dependent on statistics but cross-section drops rapidly
- Important complementary, <u>model-independent</u> determination of spin possible with large integrated luminosity

QUESTIONS, COMMENTS, SUGGESTIONS?

Current Technique (Center-Edge Asymmetry)

 Consider resonant graviton production followed by decay into a lepton pair

arXiv:0805.2734 P. Osland, A.A. Pankov, N. Paver, A.V. Tsytrinov

	Discovery		Identification	
$\mathscr{L}_{\mathrm{int}}$	c = 0.01	c = 0.1	c = 0.01	c = 0.1
$10 {\rm ~fb^{-1}}$	1.7 TeV	3.5 TeV	1.1 TeV	2.4 TeV
$100 {\rm fb}^{-1}$	2.5 TeV	4.6 TeV	1.6 TeV	3.2 TeV

arXiv:0805.2734 P. Osland, A.A. Pankov, N. Paver, A.V. Tsytrinov arXiv:0805.2734 P. Osland, A.A. Pankov, N. Paver, A.V. Tsytrinov

Partonic Processes

Process

$$gg \longrightarrow Gg$$

 $q(\bar{q}) g \rightarrow Gq(\bar{q})$

$$q \bar{q} \rightarrow G g.$$

SM background

Through an offshell Z, γ

Finally decay to e⁺ e⁻ pair

Background is from spin-1 particles. No contribution to the 4-mode! ... but contributes to the overall normalization of the cross-section.

Cuts destroy Rotational Invariance!

Matthew R. Buckley, Beate Heinemann, William Klemm, Hitoshi Murayama arXiv:0804.0476 [hep-ph]

Software Tools used

 HELAS: "HELicity Amplitude Subroutines for Feynman diagram calculation" used to get differential cross-section

(H. Murayama, I. Watanabe, Kaoru Hagiwara, 1992)

• HELAS with spin 2-particles

K. Hagiwara, J. Kanzaki, Q. Li, K. Mawatari, 2008

• BASES: adaptive Monte Carlo package to integrate the differential distributions

(S. Kawabata, 1986)

• LHApdf (CTEQ6I)

Results from Simulation

- The green curve shows the differential distribution
- 2-mode is easily visible. Is there a 4-mode?
- How do we extract information about it?

Can see a cos(4Ø) mode in addition to the cos(2Ø) mode! (with about 3% strength)
Error in S₄ in this example is ~ 20%

Spin Measurement at ILC

M.R. Buckley, H. Murayama , W. Klemm, V. Rentala arXiv:0711.0364 [hep-ph]

- Typical pair production processes followed by 2 body decay
- 2 body \rightarrow 2 body \rightarrow 4 body final state

- Characteristic signal is 2 i and missing energy (LKP/LSP) fairly generic to most extensions of the SM
- Need to be able to reconstruct the momenta of the parent particle

2-fold ambiguity

- θ is the production angle
- θ_i, ϕ_i are the decay angles in the lab frame
- ϕ_i are the same in the rest frame of the parent particle

- <u>Knowns:</u> Outgoing lepton momenta, incoming energymomentum, masses of all particles
- <u>Unknowns:</u> Missing Particles 4momentum for a total of 8 unknowns
- Equations:
 - Overall energy momentum conservation: 4 equations
 - 4 mass shell constraints for the parent/missing particles = 4 equations

8 equations and 8 unknowns! But mass-shell constraints are quadratic! Kinematic reconstruction leads to a true and a false solution.