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Motivation

Large extra dimensions are an exciting 
possibility for physics beyond the Standard 
Model. They are phenomenologically viable, 
and they lead to interesting predictions.

At a collider, the most direct experimental 
signature of extra dimensions would be 
towers of Kaluza-Klein (KK) modes.



For simple compactifications, tree-level relations 
for KK masses and couplings are straightforward 
to calculate. However, these are subject to 
radiative corrections. The renormalized KK 
parameters are what would be observed at a 
collider such as the LHC or ILC.

A number of studies have examined radiative
effects due to excited modes acting on zero 
modes. But few have examined effects of excited 
modes acting on themselves.



Suppose we compactify a single, flat 
extra dimension on a circle of radius R. 
Then the KK masses and couplings at 
tree level take the form:

How are these relations deformed under radiative corrections?

Deformations of KK 
Spectra



Possible Outcomes of Mass 
Renormalizations

1. The squared masses mn
2 may receive corrections which are 

independent of mode number. In this case, the dispersion relation 
mn

2 = n2/R2 + m2 is stable under radiative corrections. In this case, 
the corrections may be absorbed into the bare (zero mode) mass 
term m2.

2. The squared masses may receive corrections which are 
proportional to n2. In this case, the corrections may be absorbed 
into an effective value of 1/R2. In this case, the apparent geometry 
of the extra dimension is renormalized.

3. The squared masses may receive corrections which have a 
nontrivial dependence on n. Such corrections cannot be absorbed 
into the bare mass or the radius. The apparent geometry of the 
extra dimension is “broken”, and the experimental signature of 
the dimension is altered.



Renormalization of KK theories is 
surprisingly challenging.

• Higher dimensional Lorentz invariance is a 
local symmetry of the Lagrangian. However, 
the compactification breaks the symmetry 
globally. What are the appropriate symmetries 
to preserve in a calculation (4D or 5D?), and 
how are they preserved? What about gauge 
invariance?

• Higher dimensional theories are non-
renormalizable. How do we make finite, 
regulator-independent predictions?



Before one can calculate radiative corrections, 
one needs a regulator of UV divergences 
which preserves all relevant symmetries. 
Previously, such a regulator did not exist for 
general calculations in KK theories.

We developed two new regulators specifically 
for KK theories. We have used them to 
determine radiative effects on excited modes.



Criteria for a Good Regulator in a KK 
Theory

A bad regulator will introduce unphysical 
artifacts.

A good  regulator must control divergences, 
while introducing no artificial violations of 
higher dimensional symmetries.
• e.g., higher dimensional Lorentz invariance
• e.g., higher dimensional gauge invariance



After all, the compactification breaks 
higher dimensional Lorentz invariance.

Key point: But this is a global breaking
(i.e., at long distances).

However, the regulator controls effects 
in the UV (i.e., at short distances), 
where the higher dimensional 
symmetries are unbroken.

Why Preserve Higher Dimensional 
Symmetries?



Regularization artifacts must not get blended 
with physical effects of compactification.

We developed regulators specifically to respect 
higher dimensional symmetries in KK theories, 
thus eliminating artifacts and avoiding such blending.

The Extended Hard Cutoff (EHC)

Extended Dimensional Regularization (EDR)



We used these regulators to calculate 
deformations of the spectra of masses 
and couplings of KK modes.

We considered certain toy models. . . .



Toy Models: φ4 Theory and Yukawa Theory on 
an Extra Dimension Compactified to a Circle

Found cases in which the tree-level mass spectrum               
mn

2 = n2/R2 + m2 is broken under radiative corrections. But 
also found cases in which the mode-number dependence is 
stable.

Splittings between couplings for different KK modes are 
generated, even though they are uniform at tree level.

A γ5-interaction is generated in Yukawa theory. This does not 
violate parity.

Lifetimes of the KK scalars in Yukawa theory increase with 
mode number.



5D φ4 Theory

One-loop mass corrections are the same for all mode 
numbers, i.e., the tree-level dispersion relation is stable.  
The couplings split nontrivially, however.



Coupling Corrections

Radiative corrections induce coupling 
splittings.

↑
Renormalized Coupling 
Between the Modes
n, n’, n’’ and n’’’

↑
Renormalized 
Zero-Mode 
Coupling

↑
Correction to the 
Difference 
Between λn,n’,n’’,n’’’

and  λ0,0,0,0



Corrections to Coupling Differences
(Finite, Regulator-Independent Sums)

,

where

,

,

and for n ≠ 0. 

ρ = r – v for n ≠ 0, 

Zero-Mode Coupling   ↑



Leads to Small Enhanced Productions of KK 
Modes at Colliders

∆λ = ∆(λ0,0,1,-1 - λ0,0,0,0)/χλ,

χλ = λ2/(4π).

Curve A: mφ
2R2 = 0

Curve B: mφ
2R2 = 0.25

Curve C: mφ
2R2 = 0.5

∆λ is plotted against the energy scale of the
experiment, μ.

s = μ2 + 4mφ
2,

t  = u = -μ2/2



5D Yukawa Theory

,

where

↑
Dirac 

Component
↓

↑
Axial 

Component
↓



Tree-Level Relations

,

and



Radiative Corrections: Results

• Distort the tree-level dispersion relations for mn
2, 

mψn
(D) and mψn

(A). Renormalized squared masses 
cannot be written in the form 
n2/R2 + m2 (Case 3).

• Distortions to mass spectra only occur when 
there is a nonzero bare mass.

• Induce splittings between the couplings.
• Induce a non-zero value for the γ5-interaction g(A).

Nevertheless, higher dimensional parity is 
preserved, because the g(A)-terms are odd with 
respect to mode number.



Boson Mass Corrections

↑
Renormalized 
Squared 
Mass of the 
n’th Excited 
Mode

↑
Renormalized 
Squared 
Mass of the 
Zero Mode

↑
Correction to the 
Difference Between 
mn

2R2 and m0
2R2



Corrections to Squared-Mass 
Differences

↑
Zero-Mode 
Coupling

where

,

and



∆mn
2R2 = ∆(mn

2R2 – m0
2R2)/χg,

χ g = g2/(4π).

When mφ = 0, the KK spectrum deforms 
by a constant splitting.

When mφ ≠ 0, the spectrum deforms via a 
function of mode number. Nontrivial 
dependence on the bare masses.



Non-monotonic behavior due to
competition between the 
corrections to m1

2 and m0
2.

Kink at decay threshold.



Fermion Mass Corrections

Dirac Mass:

Axial Mass:



Dirac Component

,

where ,

and 



Axial Component

,

where 



Net Corrections to Squared Masses

The KK spectrum is deformed.

Competition between corrections to 
m(D)

n
2 and m(A)

n
2 leads to non-trivial 

dependencies on the bare masses.



Corrections to m(D)
n

2

Corrections increase with mψ.



Corrections to m(A)
n

2

Corrections decrease with mψ.



Corrections to m(A)
n

The axial mass corrections are 
identically zero when mψ and mφ are
equal.



mψ
2 = m2 - ∆m2, mφ

2 = m2 + ∆m2

The axial mass correction vanishes 
when mψ and mφ are equal!

Related to SUSY?



Decays
The calculations which yield mass shifts for the scalar 
modes also yield decay rates. The lifetimes of these 
particles actually increase with KK mode number!

Why?

This is a manifestation of time dilation. The larger the KK 
mode number of a particle, the greater its momentum is 
along the extra dimension.

From the 4D EFT point of view, the decay products of a KK 
state are restricted by mode-number conservation. A very 
heavy KK mode cannot decay into a pair of light particles. 
This allows lifetimes to be long.



Moreover, a very heavy KK mode can only decay

• into very many light modes (phase space 
suppression), or

• into small numbers of heavy states, which must 
sequentially decay into lighter states

Long lifetimes for heavy KK states are natural.



Conclusions

• If large extra dimensions exist, then we must understand 
the phenomenology of such dimensions.

• The existence of Kaluza-Klein towers is the most direct 
experimental signature of extra dimensions.

• Radiative corrections could alter the phenomenology of 
extra dimensions. However, effects on excited modes have 
not received much attention.

• We developed regulators which enable calculations of 
radiative corrections on excited modes. Such effects have 
not received much attention.

• Calculations performed with our regulators confirm that 
radiative corrections can indeed lead to nontrivial 
phenomenology.



New Directions

We currently are applying our methods to high-
precision calculations in higher dimensional theories 
(work in collaboration with Michael Ramsey-Musolf).

A calculation currently under way: 

Γ(π+ → e+νe)/ Γ(π+ → μ+νμ)

This is a highly sensitive probe to new physics. Effects 
from strong interactions cancel in the ratio.


