Azimuthal angular spin determination: towards the LHC

William Klemm UC Berkeley and IPMU

PHENO 09: May 11, 2009

Outline

- Brief Review
- Z + jet at Tevatron
 - Rotationally invariant cuts
- Z + jet at LHC
 - Dealing with identical beams
- Z'

Our Technique

M. Buckley, H. Murayama, WK, V. Rentala [arXiv:0711.0364]

Our Technique

• Particle produced in multiple helicities

$$\sigma \propto \left| \sum_{h} M_{production}(h) e^{ih\phi} M_{decay}(h, \phi=0) \right|^{2}$$

• Helicity states interfere!

 $\frac{d N}{d \phi} = \frac{d \sigma}{d \phi} \times L = A_0 + A_1 \cos(\phi) + \dots + A_n \cos(n \phi); n = \Delta h$

• Measuring distribution places limit on spin

$$s \ge \frac{n_{meas}}{2}$$

scalar: A_0 spinor: $A_0 + A_1 \cos(\phi)$ vector: $A_0 + A_1 \cos(\phi) + A_2 \cos(2\phi)$

Example: Z+jet at Tevatron

- Fully reconstructible
- Z produced in multiple helicity states

M. Buckley, B. Heinemann, WK, H. Murayama [arXiv:0804.0476]

Initial results

• The *Z* is a vector boson!

 $A_1/A_0 = 0.036$ $A_2/A_0 = 0.100$ $A_3/A_0 = 0.000$ $A_4/A_0 = 0.000$

Cuts on jet: $p_T > 30 \, GeV$, $|\eta| < 2.1$

Detector Cuts

- Selection cuts necessary to improve sample, deal with detector limitations.
- CDF: 6203 events from 1.7 fb⁻¹ luminosity at 1.96 TeV beam energy (after cuts)

Jet transverse momentum	$p_{T,j} > 30 \text{ GeV}$
Jet η	$ \eta < 2.1$
Invariant mass of lepton pair	$66 < m_{\ell\ell} < 116~{\rm GeV}$
Central electron η	$ \eta < 1$
Second electron η	$ \eta < 1 \text{ or } 1.2 < \eta < 2.8$
Electron E_T	$E_T > 25 \mathrm{GeV}$
Electron isolation cuts	$\Delta R_{ej} > 0.7$

Detector Cuts

• Spurious higher order modes from the cuts

 $\begin{array}{r}
A_1/A_0 = 0.029 \\
A_2/A_0 = -0.277 \\
A_3/A_0 = -0.021 \\
A_4/A_0 = -0.123
\end{array}$

Rotationally Invariant cuts

Revised results

- New cuts restore expected behavior
- Inefficient -> loosened cuts

 $A_{1}/A_{0} = 0.039 \pm 0.022$ $A_{2}/A_{0} = 0.083 \pm 0.021$ $A_{3}/A_{0} = 0.000 \pm 0.022$ $A_{4}/A_{0} = 0.000 \pm 0.023$

• More data collection – smaller error bars

Z+jet at the LHC

- What physics can be done with the early LHC data? $(E_{beam} = 5 TeV, \sim 100 pb^{-1} integrated luminosity)$
- Even at low luminosity, very high production rate
 - Cuts: $jet : p_T > 40 \, GeV$, $|\eta| < 3.2$ $lepton : one \ p_T > 10 \, GeV$, one $p_T > 20 \, GeV$ $lepton : |\eta| < 2.5$ $jet - lepton : \Delta R > 0.7$ $lepton \ pair : 66 < m_{1l} < 116 \, GeV$

Z+jet at the LHC: Results

• Better than 3 sigma for $100 \ pb^{-1}$

 $A_{1}/A_{0} = 0.000 \pm 0.024$ $A_{2}/A_{0} = 0.079 \pm 0.024$ $A_{3}/A_{0} = 0.000 \pm 0.024$ $A_{4}/A_{0} = 0.000 \pm 0.025$

Challenges at the LHC

- Identical beams
- Missing Energy

with H. Murayama

 $\cos(\phi) = \frac{\hat{z} \times \vec{p}_Z}{|\hat{z} \times \vec{p}_Z|} \cdot \frac{\vec{p}_Z \times \vec{p}_l}{|\vec{p}_Z \times \vec{p}_l|}$

$$\frac{dN}{d\phi}(p_1 p_{2,}\phi) = \frac{dN}{d\phi}(p_2 p_{1,}\pi - \phi)$$

$$\phi \rightarrow \pi - \phi$$

Challenges at the LHC

$$\frac{N}{\phi}(p_1p_2,\phi) = \frac{dN}{d\phi}(p_2p_1,\pi-\phi)$$

$$\frac{dN}{d\phi}(p_1p_2) = a_0 + a_1\cos(\phi) + a_2\cos(2\phi)$$

$$\frac{dN}{d\phi}(p_2p_1) = a_0 + a_1\cos(\pi-\phi) + a_2\cos(2(\pi-\phi))$$

$$= a_0 - a_1\cos(\phi) + a_2\cos(2\phi)$$

 $\frac{d}{d}$

 $\frac{dN}{d\phi}(p_1p_2+p_2p_1)=2a_0+0\cos(\phi)+2a_2\cos(2\phi)$ • Odd modes disappear

Odd modes: If we knew everything

Red: idealized filter

 $\begin{array}{c} \phi(q\,\overline{q}\,,\,qg\,,\,g\,\overline{q}\,) \rightarrow \phi \\ \phi(\overline{q}\,q\,,\,gq\,,\,\overline{q}\,g) \rightarrow \pi - \phi \end{array} \end{array}$

Blue: no filter $A_1/A_0 = 0.000$ $A_2/A_0 = 0.096$ $A_3/A_0 = 0.000$ $A_4/A_0 = 0.000$

 $A_1/A_0 = 0.015$ $A_2/A_0 = 0.096$ $A_3/A_0 = 0.000$ $A_4/A_0 = 0.000$

Odd modes

Production angle differentiates initial partons

 $p_1 p_2 \rightarrow Z jet$

Filter: $\begin{array}{c} \phi(\cos(\theta) > 0) \to \phi \\ \phi(\cos(\theta) < 0) \to \pi - \phi \end{array}$

Odd modes

• Success (in principle)

 $A_1/A_0 = 0.005$ $A_2/A_0 = 0.096$ $A_3/A_0 = 0.000$ $A_4/A_0 = 0.000$

Z' + jet

- Model: Z' with SM couplings
- Simulation at 14 TeV
- Same cuts as Z + jet (with sliding invariant mass window)

with H. Murayama

Conclusions

- Model-independent spin measurement
- Selection cuts must be made 'rotationally invariant' to preserve form of distribution
- Technique can be tested using existing data and early LHC data
- Z' spin determination
- Identical beams at LHC necessitate careful treatment of odd modes
- Processes with missing energy require a better solution

Spin Measurement Techniques

- Linear collider
 - Threshold scans:
 - Production angle (s-channel pair production):

$$\sigma_{scalar} \sim \sin^2(heta)$$
 ,

$$\sigma_{spinor} \sim 1 + \frac{E^2 - m^2}{E^2 + m^2} \cos^2(\theta)$$

 $\sigma_{scalar} \sim \beta^3$, $\sigma_{spinor/vector} \sim \beta$

- Linear and Hadron Collider
 - Polar decay angle requires chiral couplings, full reconstruction

Our Technique

- Particle with momentum \vec{p} and helicity *h* decays
- Rotations generated by $U(\phi) = e^{i\vec{J}\cdot\vec{\phi}} \rightarrow e^{iJ_z\phi}$
- Define *z*-axis with momentum of decaying particle $(\vec{s} + \vec{x} \times \vec{p}) \cdot \vec{p} = \vec{s} \cdot \vec{p}$

$$J_{z} = \frac{(s + x \times p) \cdot p}{|\vec{p}|} = \frac{s \cdot p}{|\vec{p}|} = h$$

• Matrix element of decay carries angle as a phase

$$M_{decay}(h,\phi) = e^{ih\phi}M_{decay}(h,\phi=0)$$